Conventional Encryption
Message Confidentiality
What Is Cryptography?

- Cryptography -- from the Greek for “secret writing” -- is the mathematical “scrambling” of data so that only someone with the necessary *key* can “unscramble” it.
- Cryptography allows secure transmission of private information over insecure channels (for example packet-switched networks).
- Cryptography also allows secure storage of sensitive data on any computer.
Alice and Bob agree on an encryption method and a shared key.

Alice uses the key and the encryption method to encrypt (or encipher) a message and sends it to Bob.

Bob uses the same key and the related decryption method to decrypt (or decipher) the message.
Conventional Encryption Principles

• An encryption scheme has five ingredients:
 - Plaintext
 - Encryption algorithm
 - Secret Key
 - Ciphertext
 - Decryption algorithm

• Security depends on the secrecy of the key, not the secrecy of the algorithm!
Conventional Encryption Principles

\[x = \text{plain text}, \ k = \text{key}, \ \text{ciphertext } y = E[k,x], \ \text{decipher: } x = D[k,y] \]
Average time required for exhaustive key search

<table>
<thead>
<tr>
<th>Key Size (bits)</th>
<th>Number of Alternative Keys</th>
<th>Time required at 10^6 Decryption/μs</th>
</tr>
</thead>
<tbody>
<tr>
<td>32</td>
<td>$2^{32} = 4.3 \times 10^9$</td>
<td>2.15 milliseconds</td>
</tr>
<tr>
<td>56</td>
<td>$2^{56} = 7.2 \times 10^{16}$</td>
<td>10 hours</td>
</tr>
<tr>
<td>128</td>
<td>$2^{128} = 3.4 \times 10^{38}$</td>
<td>5.4×10^{18} years</td>
</tr>
<tr>
<td>168</td>
<td>$2^{168} = 3.7 \times 10^{50}$</td>
<td>5.9×10^{30} years</td>
</tr>
</tbody>
</table>
Time to break a code \((10^6 \text{ decryptions/µs}) \)
Feistel Cipher Structure

• Virtually all conventional block encryption algorithms, including DES have a structure first described by Horst Feistel of IBM in 1973

• The realization of a Feistel Network depends on the choice of the following parameters and design features (see next slide):
Feistel Cipher Structure

- **Block size:** larger block sizes mean greater security
- **Key Size:** larger key size means greater security
- **Number of rounds:** multiple rounds offer increasing security
- **Subkey generation algorithm:** greater complexity will lead to greater difficulty of cryptanalysis.
- **Fast software encryption/decryption:** the speed of execution of the algorithm becomes a concern
Figure 2.2 Classical Feistel Network
DES

• The overall processing at each iteration:
 - \(L_i = R_{i-1} \)
 - \(R_i = L_{i-1} \oplus F(R_{i-1}, K_i) \)

• Concerns about:
 - The algorithm and the key length (56-bits)
Figure 2.3 General Depiction of DES Encryption Algorithm
Figure 2.4 Single Round of DES Algorithm
Triple DEA

![Diagram of Triple DEA]

Figure 2.6 Triple DEA
Cipher Block Modes of Operation

- Cipher Block Chaining Mode (CBC)
 - The input to the encryption algorithm is the XOR of the current plaintext block and the preceding ciphertext block.
 - Repeating pattern of 64-bits are not exposed

\[
C_i = E_k[C_{i-1} \oplus P_i]
\]

\[
D_K[C_i] = D_K[E_k(C_{i-1} \oplus P_i)]
\]

\[
D_k[C_i] = (C_{i-1} \oplus P_i)
\]

\[
C_{i-1} \oplus D_K[C_i] = C_{i-1} \oplus C_{i-1} \oplus P_i = P_i
\]
Figure 2.7 Cipher Block Chaining (CBC) Mode
Advantages of Classical Cryptography

• There are some very fast classical encryption (and decryption) algorithms
• Since the speed of a method varies with the length of the key, faster algorithms allow one to use longer key values.
• Larger key values make it harder to guess the key value -- and break the code -- by brute force.
Disadvantages of Classical Cryptography

• Requires secure transmission of key value
• Requires a separate key for each group of people that wishes to exchange encrypted messages (readable by any group member)
• For example, to have a separate key for each pair of people, 100 people would need 4950 different keys n(n-1).
Clasification of Cryptography

- The number of keys used
 - symmetric (single key)
 - asymmetric (two-keys, or public-key encryption)
Conventional Encryption Algorithms

- Data Encryption Standard (DES)
 - The most widely used encryption scheme
 - The algorithm is referred to the Data Encryption Algorithm (DEA)
 - DES is a block cipher
 - The plaintext is processed in 64-bit blocks
 - The key is 56-bits in length
Triple DEA

• Use three keys and three executions of the DES algorithm (encrypt-decrypt-encrypt)

\[C = E_{K3}[D_{K2}[E_{K1}[P]]] \]

- \(C \) = ciphertext
- \(P \) = Plaintext
- \(E_K[X] \) = encryption of \(X \) using key \(K \)
- \(D_K[Y] \) = decryption of \(Y \) using key \(K \)

• Effective key length of 168 bits
Location of Encryption Device

- **Link encryption:**
 - A lot of encryption devices
 - High level of security
 - Decrypt each packet at every switch

- **End-to-end encryption**
 - The source encrypt and the receiver decrypts
 - Payload encrypted
 - Header in the clear

- **High Security:** Both link and end-to-end encryption are needed
Secret key Distribution:

- The two parties must share their secret key
- 1. generated by one party and manually delivered
- 2. generated by one and delivered using shared secret
- 3. created by third party and delivered through secured channel

1-2: for small organizations

- Number of pairs for n users: \(n(n-1)/2 \)
- KDC can play the role of key distribution
Algorithms:

1. U_A issues req. to kdc for session key for session with user U_B.

 req. = identity of U_A, identity of connection ID_A (=time stamp, counter or rand. no., protocol ref.)

2. kdc creates session key (K_s), responds with msg encrypted using a pre-established secret key K_A between U_A and kdc.

 msg = session key K_s + original req copy + sub msg. encrypted using preshared key K_B between kdc and U_B (sub msg=K_s, id. of U_A)
Now U_A can verify that original req. was not altered.

3. U_A sends msg to U_B.

 $$
 \text{msg} = \text{its identity, session id } ID_A, \text{ encrypted sub message of } \text{kdc to be relayed to } U_B, \text{ encryption of } ID_A
 $$

4. On arrival U_B can check identity of U_A, and integrity of K_s.
 (At this point one can deduce that secret key has been securely delivered to U_A and U_B.)

Now the message transfer can go on between U_A and U_B.