Advanced Algorithms Fall 2015

Lecture 3: Geometric Algorithms(Convex sets, Divide & Conquer Algo.)
Faculty: K.R. Chowdhary : Professor of CS

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications.
They may be distributed outside this class only with the permission of the faculty.

3.1 Computational Geometry

Computational geometry has evolved from the classical discipline of the design and analysis of algorithms.
It is concerned with computational complexity of geometric problems that arise in disciplines like, pattern
recognition, computer graphics, computer vision, robotics, and very-large scale integrated (VLSI) layout,
operation research, statistics, etc. In contrast to the classical approach to proving mathematical theorems
about geometry-related problems, this discipline emphasizes the computational aspect of these problem and
attempts to exploit the underlying geometric properties, e.g., the metric space, to derive efficient algorithmic
solutions. The classes of problems that we address in this chapter include proximity, intersection, searching,
point location, convex set, convex hull, Voronoi diagrams, CAD/CAM, etc.

3.2 Divide and Conquer

This is a basic problem solving technique and has proven to be very useful for geometric problems as well.
This technique mainly involves partitioning of the given problem into several subproblems, recursively solving
each subproblem, and then combining the solutions to each of the subproblems to obtain the final solution
to the optimal problem.

We demonstrate its working by considering the problem of computing the common intersection of n half
planes in the plane. Given is the set S of n half-planes, h;, represented by,
a;x+by<c,i=12,...,n. (3.1)

Example 3.1 Let fori=1, hy is: bx + 4y > 20. This gives all points in half plane as shown in figure 3.1.

It is simple to understand that, common intersection
of half-planes, denoted by,

C(S) =) hs (3.2)

is a convex set, which may or may not be bounded. If
it is bounded, it is convex polygon. In figure 3.2 the
shaded area is common intersection.

Figure 3.1: Half plane 5z + 4y > 20.
3-1

3-2 Lecture 3: Geometric Algorithms(Convex sets, Divide & Conquer Algo.)

The divide and conquer algorithm computes the fol-
lowing steps:

Algorithm 1 : Algorithm common-intersection-D&C(S);
if |S]| < 3 then
compute the intersection CI(S) explicitly
Return (C(S))
end if
Divide S into two approx. equal subsets S; and S
CI(S1) = Common-Intersection-D&C(S1)
CI(S2) = Common-Intersection-D&C(Ss)
CI(S) = Merge (CI(Sy), CI(S2))
Return (CI(S))

The key step is the merge of two common intersec-

tions. Because CI(S1) and CI(S3) are convex, the merge step basically calls for the computation of the
intersection of two convex polygons, which can be solved in time proportional to the size of the polygons.
The running time of D&C algorithm is O(nlogn) due to following recurrence formula, where n = |S|.

)+O(n)+M(g,g),

’ /’ //
where, M (%, %) = O(n) denotes the merge time (step \ \\4
5).

Figure 3.2: Divide-and-conquer scheme for common
intersecting half-planes(half planes are on the side of
3.3 Convex Set arTows). g (
Definition 3.2 Convex Set. In Fuclidean space, a convex set is the region such that, for every pair of
points within the region, every point on the straight line segment that joins the pair of points is also within
the region.

Let S be a vector space over the real numbers R, or,

more generally, some ordered field. This includes Eu-
clidean spaces. A set C in S is said to be conver if,
for all p and ¢ in C and all « in the interval [0, 1], the
point (1 —a)p+ aq also belongs to C. In other words,
every point on the line segment connecting p and q is = .
a (b)

in C. This implies that a convex set in a real or com-

plex topological vector space is path-connected, thus

connected. Furthermore, C is strictly conver if every Figure 3.3: (a) Convex set, (b) Non-convex set.
point on the line segment connecting p and ¢ other

than the endpoints is inside the interior of C.

In geometric terms, a body C' in the Euclidean space is convex if and only if the line segment joining any
two points in C lies totally in C. But, this theorem is not suitable for computational purpose as there are

Lecture 3: Geometric Algorithms(Convex sets, Divide & Conquer Algo.) 3-3

infinitely many possible pairs of points to be considered. However, other properties of convexity C' be utilized
to yield an algorithm.

For example, a cube in R3 is a convex but its boundary is not, for the boundary does not contain segment
pq, unless p and q lie in the same two-dimensional face of the cube.

The importance of convexity theory stems from the fact that convex sets frequently arise in many areas of
mathematics, and are helpful in elementary reasoning. Even infinite-dimensional theory is based on 2- and
3-dimensional reasoning.

Any two distinct points p and ¢ of real vector space i determine a unique line. It consists of all points of
the form (1 — a) * p + a * ¢, « ranging over all real numbers. Those points for which « > 0 and those for
which 0 < a <1 form respectively the ray from p through g and the segment pq.

The convex subsets of R (the set of real numbers) are simply the intervals of R. Some examples of convex
subsets of the Euclidean plane are solid regular polygons, solid triangles, and intersections of solid triangles.
Some examples of convex subsets of a Euclidean 3-dimensional space are the Archimedean solids and the
Platonic solids. The Kepler-Poinsot polyhedra are examples of non-conver sets.

Example 3.3 The figure 3.4(a) shows a line segment, while 3.4(b) shows a circle in 2-dimensional convex
set.

Solution. the case of line segment, let the
points marked on line are 2, 3, 4, 5. Let us
call the points on line as the set C. Hence,
(I1—a)*p+ageC. Let « =0.5, p=2, and
g = 5. We note that (1 —0.5)*«2+05%x5= p
3.5eC.

@
Similarly, we can verify it for circle. Let the
circle is 22 + 3% = 2, i.e., centered at (0, 0),
with radius of 1. Let z = 0.5,y = 0.75 is p (a) (b)
and r = —0.4,y = —0.8 are the points p and
q. Let @« = 0.6. Then first, (1 —«a) *p+ ag =
(1—0.6)0.5+(—0.4)%0.6 = —0.04. Similarly, for
y, (1—a)*p+ag=(1-0.6)0.75+ (—0.8) 0.6
= —0.18. Thus, we note that (1 —) *xp + aq
= (—0.04,—0.18) € C, which satisfy the criteria of convexity. Like, this it should satisfy for all (z,y) in the
set C.

Figure 3.4: (a) Points ona line segment as a Convex set ,
(b) Points in a circle as a convex set.

Definition 3.4 A function is convex if and only if its epigraph, the region (in hashed) above its graph (see
fig. 8.5), is a convez set .

Properties of Conver sets: If S is a convex set in n-
dimensional space, then for any collection of r, r > 1, n-
dimensional vectors uy, ..., u, in S, and for any nonnegative
numbers A1, ..., A such that Ay +---4+ A, = 1, then we have:

> Mg € S, (3.3)
k=1

Figure 3.5: Convex function.

3-4 Lecture 3: Geometric Algorithms(Convex sets, Divide & Conquer Algo.)

A vector of this type is known as a convex combination of

ULy ooy Up.

3.3.0.1 Intersections and unions

The collection of convex subsets of a vector space has the following properties:

1. The empty set and the whole vector-space are convex.

2. The intersection of any collection of convex sets is convex(figure 3.6).

3. The union of a non-decreasing sequence of convex subsets is a convex set. For the preceding property
of unions of non-decreasing sequences of convex sets, the restriction to nested sets is important: The

union of two convex sets need not be convex.

For example, the non-decreasing convex sets are C; = {a, b}, and Co = {a,b,c}. Then, their union,

Cy UCs ={a,b,c}, is obviously, a convex set.

Definition 3.5 Jordan curve theorem. In topology, a Jordan curve is a non-self-intersecting continuous
loop in the plane. The Jordan curve theorem asserts that every Jordan curve divides the plane into an
“interior” region bounded by the curve and an “exterior” region containing all of the nearby and far away
exterior points, so that any continuous path connecting a point of one region to a point of the other region

intersects with that loop somewhere.

Hence, any two points p, ¢ outside a Jordan curve will in-
tersect even number of times, and two pointer p,r, one is
outside and other inside will intersect the curve odd number
of times (see figure 3.7(a), and 3.7(b)).

Consider the following problem. Given a simple closed Jor-
dan polygon curve, determine if the interior region enclosed
by the curve is convex. This problem can be readily solved
solved by observing that if line segment defined by all pairs
of vertices of the polygon curve, 7;,7;,7 # j,1 < 7,5 < n,
where n denotes the total number of vertices, lie totally in-
side the region, then the region is convex.

This would yield a straight algorithm with time complexity
O(n?), as there are O(n?) line segments, and to test if each
line segment lies totally in the region takes O(n) time by
comparing it against every polynomial segment.

Outside Region

Inside region

() (b)

Figure 3.7: Jordan Curve.

A
B
(a) b (b)

Figure 3.6: Intersection of Convex sets A and
B, (a) 2-dimensional, (b) 2-dimensional, (c)
3-dimensional, are all convex.

It may be noted that the interior angle of
each vertex must be strictly less than m, in
order for the region to be convex. If it is
more than 7 it is reflex. It may be noted
that all the vertices must be convex, is the
necessar condition for the region to be con-
vex.

Lecture 3: Geometric Algorithms(Convex sets, Divide & Conquer Algo.) 3-5

3.3.1 Is point inside the poly-
gon

The general problem we’d like to solve is,

given a point (z,y) and a polygon P (repre-

sented by its sequence of vertices), is (x,y)
in P, on the boundary, or outside?

Fortunately the problem has a simple and elegant answer. Just draw a ray (portion of a line extending
infinitely in one direction) down (or in any other direction) from (z,y), count crossings on ray.

Every time the polygon crosses this ray, it separates a part of the ray that’s inside the polygon from a part
that’s outside. For this, all we really need to know is whether there’s an even or odd number of them. In
even crossings, the point is outside the polygon.

Algorithm 2 : function is-point-inside-polygon(polygon, point) return inside/outside;

1: for each line segment of the polygon do

2: if ray down from (x,y) crosses segment then
3 crossings+-;

4: end if

5. if crossings is odd then

6 return (inside);

7. else

8 return (outside);

9: end if

10: end for

References

[1] MIKHAIL J. ATALLAH & MARINA BLANTA, “Algorithms and Theory of Computation Handbook, Spe-
cial Topics and Techniques, II ed.,” CRC Press, 2010.

[2] ALLEN B. TUCKER, JR., “The computer Science and Engineering Handbook,” CRC' Press, 1997.

