32002: AI (Alpha-Beta Search) Spring 2014

Lecture 35: April 10, 2014
Instructor: K.R. Chowdhary : Professor of CS

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications.
They may be distributed outside this class only with the permission of the Instructor.

35.1 Alpha-Beta Procedure

Alpha-Beta is a tree-search procedure that is faster than minimax but still equivalent in the sense that both
procedures will always choose the same depth successor at best, and will assign the same value to it. Alpha-
Beta is typically several orders of magnitude faster than minimax. It saves time by not searching certain
branches of the tree. Under certain conditions the values of certain branches do not affect the value which
is ultimately backed up to higher levels of the tree. Hence, there is no point in evaluating these branches.
When the Alpha-Beta program detects these conditions, it stops work on one branch and skips to another.
This event is called an alpha or beta cutoff.

Backed-up
value ~——, 5 o @ MIX Position

. 3 Bottom level
static. . positions
evaluations —> 5 10 12 3 10 0 7 5 1 Depth 2
Positions not X X X

evaluated due —™>

alpha-cutoff

Figure 35.1: Alpha-Beta search.

At first it appears that static evaluator must be used on each leaf-node at the bottom of the search-tree.
But, it is not required. To see how alpha-beta search works, consider the example shown in figure 35.1.
Alpha-beta starts just like minimax procedure by evaluating all the successor of P;. The minimum of these
static vales is then backed-up to Py, since P; is a MIN position. The backed-up value of P; is alpha and has
a value 5 in this example.

Alpha is lower limit for the backed-up value of the top position, P. Since, P is max position, we back-up the
value of the largest values successor of P. Since, we have evaluated only one successor at this time, we do
not know that it will be 5 or larger. The value of alpha may change as the other successors are evaluated,
but it can only increase, not decrease.

Having evaluated P, the procedure begin work on P,. An alpha cut-off takes place at Pp; = 3, as it is less
than alpha. Since P is a Min position, V51 is an upper limit for V5 (value of node P»). Since V5 is less than
alpha, P» is definitely eliminated as a candidate for the largest valued successor of P. There is no point in
evaluating the other successors of P> so the procedure begins work on P; next.

The above cut-offs saves the machine a good deal of time. The alpha cut-off at P> ; means that the machine

35-1



35-2 Lecture 35: April 10, 2014

D=5

D=6

D=7

X = Cut-offs

Figure 35.2: Deep Alpha cut-offs.

need not bother to evaluate P and P 3. A second alpha cut-off occurs at P39, which eliminates Ps 3.
Thus, in the figure 35.1 alpha-beta search program would evaluate only six of the bottom level successors,
while a minimax program would evaluate all nine.

Although the example is given only for a tree of three levels, it is clear that procedure will work just the
same below any Max position P,, at any depth in a large tree, provided only that there are at least two
levels below P,. If there were more levels below P; ; in the example, then we could use the back-up value of
Py 1 instead of static value. If there were more levels above P, then we could backup of P.

Moreover, it is possible to pass a value of alpha down from the top of a large tree. Thus, an alpha established
at depth 1 could be used to produce cut-offs at depths 2, 4, and 6. These deep cut-offs are illustrated in
figure 35.2.

Alpha is defined by the values of the successors of a Max positions (i.e., odd depths, here it is P;, Py, Ps
nodes), while alpha cut-off occur among the successors of a Min position (even depths, here it is Py ;... Ps3)
It is possible to define another variable, Beta, which is established at even depths and generates cut-offs at
off depths. The action of beta cut-off is exactly inverse of alpha cut-offs.

The effect of alpha-beta cut-off is to make the tree space grow slowly with depth. Thus, the advantage over
simple MINIMAX. It is about twice as good as at Maximum depth Dmax = 3 and about thirty times as
good at Dmax = 6. This is typical. It is good to have depth dependent program. Such a measure we call as
depth ration DR,

log N

DR= —>
lOgN]\/[M

(35.1)

where, N is number of nodes at the bottom of tree, and Njsps is number of nodes at the bottom of tree in
minimax search. DR = [0, 1], is effective depth in comparison to minimux procedure.

Alpha-beta search is equivalent to minimax in the sense the two procedure will choose the same depth
successor as best and will always give the same value for the successor.

35.1.1 Complexities of Alpbha-Beta

The benefit of alpha-beta pruning lies in the fact that branches of search-tree can be eliminated so that
search-tree can be limited to more promising subtrees and deeper search can be performed in lesser time.
Thus it belong to the branch-and-bound class of algorithms.



Lecture 35: April 10, 2014 35-3

If move ordering for alpha-beta is optimal (best moves are always selected first), then the total number of
leaf nodes to be evaluated are O(b?) = O(v/b%). The explanation of above is that all the first players’ moves
must be studied to find the best one, but for each only the best second player’s move is needed to refute all
but the first (and best) player move-alphabet ensures that no second player moves need to be considered.
Thus, the complexity (Ob%) is possible if nodes are ordered. If they are at random then it is O(b¥).

Thus, it can be demonstrated that the number of static evaluations needed to discover the best move in an
optimally arranged tree is O(bd/ 2). Let the static evaluator function is represented by a variable ¢, which
needs to be maximized and minimized at different levels. We note in figure 35.1 that evaluation of ¢ is not
required at level 1 (shown with values 5 and < 3 for minimizing level). This is because we do not need to
evaluate for < 3, as the value 5 is carried forward to the root. Since static evaluations are required only at
the alternate levels, the depth of search reduces to half. Therefore the time time complexity is O(b%/?).

35.1.2 Improving the efficiency of Alpha-Beta

The number of cut-offs generated by alpha-beta procedure depends on the order in which successors are
evaluated. In figure 35.1, if machine had evaluated P», P3 then P, alpha would have been 0, then 1, then 5,
and there would have been no alpha-cut off.

This fact suggests the possibility of improving the alpha-beta procedure by ordering successors of a position
in order to generate a large number of alpha-beta cut-offs.

This can, in fact, be done by ordering successors of a position in order to generate a large number of alpha
and beta cut-offs.

The ordering can be achieved by ordering the nodes of search tree at their static values. The largest value
successor of a max position is put first and reverse order is used for the successors of min position. this
procedure is based on the assumption that their static value of a position is positively correlated with the
deeper, backup value at that position. Since ordering obtained may not be correct at other levels, dynamic
ordering may be adopted.

References

[NILSON1990] Nius J. NiLssoN, “Principles of Artificial Intelligence,” Narosa Publisher, New Delhi,
India, 1990. (chapter 3)

[RNOO5] S. RusseL AND P. Norvia, “Artificial Intelligence - A Modern Approach,” 2nd Edition, Pear-
son Education, India, 2005. (chapter 6)



