
32002: AI (Conversion clausal form, unification, mgu, theorem proving) Spring 2015

Lecture 5: January 15, 2015

Lecturer: K.R. Chowdhary : Professor of CS (VF)

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications.
They may be distributed outside this class only with the permission of the Instructor.

5.1 Conversion to Clausal Form

Following are the steps to convert a predicate formula into clausal-form.

1. Eliminate all the implications: p → q ≡ ¬p ∨ q.

2. Move the outer negative symbol into the atom: replace ¬∀xp(x) by ∃x¬p(x).

3. Replace ∃x∀y(f(x) → f(y)) by ∀y(f(a) → f(y)).

4. Rename the variables if necessary.

5. Replace existentially quantified variables with Skolem functions and drop corresponding quantifiers:
for ∀x∃y[¬p(x) ∨q(y)], we obtain ∀x[¬p(x) ∨ q(f(x)).

6. Move the universal quantifiers to the left of equation: ∃x[¬p(x) ∨ ∀y q(y)] to ∃x∀y[¬p(x) ∨ q(y)]

7. Terms should be connected by conjunctions only, vertically.

8. Eliminate the conjunctions.

9. Rename the variables, if necessary.

10. Drop all the universal quantifiers, and write each term in a separate line.

Example 5.1 Convert the expression ∃x∀y[∀z p(f(x), y, z) ⇒ (∃u q(x, u) ∧ ∃v r(y, v))] to clausal form.

Solution. Steps:

1.

∃x∀y[¬∀z p(f(x), y, z) ∨ (∃u q(x, u) ∧ ∃v r(y, v))]

2.

∃x∀y[∃z¬p(f(x), y, z) ∨ (∃u q(x, u) ∧ ∃v r(y, v))]

3.

∀y[∃z¬p(f(a), y, z) ∨ (∃u q(a, u) ∧ ∃v r(y, v))]

4. Rename variables (not required in this example.)

5-1



5-2 Lecture 5: January 15, 2015

5.

∀y[¬p(f(a), y, g(y) ∨ (q(a, h(y) ∧ r(y, l(y))]

6. Not required in this example.

7. Move disjunctions down to literals.

∀y[(¬p(f(a), y, g(y)) ∨ (q(a, h(y))) ∧ (¬p(f(a), y, g(y)) ∨ r(y, l(y)))]

8. Eliminate conjunctions.

∀y[¬p(f(a), y, g(y)) ∨ (q(a, h(y)), (¬p(f(a), y, g(y)) ∨ r(y, l(y))]

9. Not required in this example.

10. Drop all universal quantifiers and write each term on separate line.

¬p(f(a), y, g(y)) ∨ (q(a, h(y)),

¬p(f(a), y, g(y)) ∨ r(y, l(y)).

�

5.2 Substitutions and Unification

The following definitions are concerned with the operation of instantiation, i.e, substitutions of terms for
variables in the well-formed expressions and in sets of well-formed expressions.

Substitutions. A substitution is any finite set (possibly empty) of substitution components, none of the
variables of which are same. If P is any set of terms, and the terms of the components of the substitution
θ are all in P , we say that θ is a substitution over P . We write the substitution where components are
T1/V1, . . . , Tk/Vk as {T1/V1, . . . , Tk/Vk}, with the understanding that order of components is immaterial.
We will use lowercase Greek letters θ, λ, µ denote substitutions.

Instantiations. If E is any function string of symbols, and θ = {T1/V1, . . . , Tk/Vk} is any substitution,
then the instantiation of E by θ is the operation of replacing each occurrence of variable Vi, 1 ≤ i ≤ k, in E
by occurrence of the term Ti. The resulting string denoted by Eθ is called an instance of E by θ, i.e., if E
is the string E0Vi1E1 . . . VinEn, then Eθ is the string E0Ti1E1 . . . TinEn. Here, none of the substrings Ej of
E contain occurrences of variables V1, . . . , Vk, some of Ej are possibly null, n is possibly 0, and each Vij is
an occurrence of one of the variables V1, . . . , Vk. Any string Eθ is called an instance of the string E.

If C is any set of strings and θ is substitution, then the instance of C by θ is the set of all strings Eθ, where
E is in C. We denote this set by Cθ, and say that it is an instance of C.

Composition of Substitutions. If θ = {T1/V1, . . . , Tk/Vk} and λ are any two substitutions, then the
composition of θ and λ denoted by θλ is union θ

′

∪ λ
′

, defined as follows:



Lecture 5: January 15, 2015 5-3

The θ
′

is set of all components Tiλ/Vi, 1 ≤ i ≤ k, such that Tiλ (λ substituted in θ) is different from Vi, and
λ

′

is set of all components of λ whose variables are not among V1, . . . , Vk.

Within a given scope, once a variable is bound, it may not be given a new binding in future unifications and
inferences. If θ and λ are two substitution sets, then the composition of θ and λ, i.e., θλ, is obtained by
applying θλ to the elements of θ and adding the result to λ.

Example 5.2 Find out the composition of {x/y, w/z}, {v/x}, and {A/v, f(B)/w}.

Solution. Let us assume that θ = {x/y, w/z}, λ = {v/x} and µ = {A/v, f(B)/w}. Following are the steps:

1. To find the composition λµ, A is is substituted for v, and v is then substituted for x. Thus, λµ =
{A/x, f(B)/w}.

2. When result of λµ is substituted in θ, we get composition θλµ = {A/y, f(B)/z}. �

Example 5.3 Find out the composition of λ = {g(x, y)/z}, and θ = {A/x,B/y, C/w,D/z}.

Solution. By composition,

λθ = {g(x, y)/z} ◦ {A/x,B/y}

= {g(A,B)/z,A/x,B/y, c/w}

The {D/z} has not been included in the resultant substitution set, because otherwise, there will be two
terms for the variable z, one g(A,B) and other D. �

One of the important property of substitution is that, if E is any string, and σ = θλ, then Eσ = Eθλ. It is
straight forward to verify that ǫθ = θǫ = θ for any substitution θ. Also, composition enjoys the associative
property (θλ)µ = θλµ), so we may omit the parentheses in writing multiple compositions of substitutions.
The substitutions are not in general commutative; i.e., it is generally not the case that θλ = λθ.

The point of the composition operation on substitution is that, when E is any string, and σ = θλ, the string
Eσ is just the string Eθλ, i.e., the instance of Eθ by λ. The composition also have distributive property.

5.2.1 Most General Unifiers

The most important way of avoiding needless search in a first-order derivation is to keep the search as general
as possible. Consider, for example two clauses

c1 = p(g(x), f(x), z),

and

c2 = ¬p(y, f(w), a).

These two literals are unified by the substitution,



5-4 Lecture 5: January 15, 2015

θ1 = {b/x, g(b)/y, a/z, b/w},

and also by,

θ2 = {f(z)/x, g(f(z))/y, a/z, f(z)/w}.

We may very well be able to derive the empty clause using c1, c2 with substitution of θ1; but if we cannot,
we will need to consider other substitutions like θ2.

The trouble is that both of these substitutions are overly specific. We can see that any unifier must give w
the same value as x, and to y the same as g(x), but we do not need to commit yet to a value for x. The
substitution,

θ3 = {g(x)/y, a/z, x/w}

unifies the two literals without making an arbitrary choice that might preclude a path to the empty clause.
It is a most general unifier.

More precisely, a most general unifier (mgu)(i. e., simplest one) θ of literals ρ1 and ρ2 is a unifier that has
the property that for any other unifier θ

′

, there is a further substitution θ∗ such that θ
′

= θθ∗. So starting
with θ you can always get to any other unifier by applying additional substitutions. For example, given θ3,
we can get to θ1 by further applying b/x, and to θ2 by applying f(z)/x. Note that an mgu need not be
unique, in that θ4 = {g(w)/y, a/z, w/x} is also an mgu for c1 and c2.

The key fact about mgus is that we can limits the resolution rule to mgus without loss of completeness. This
helps immensely in the search since it dramatically reduce the number of resolvents that can be inferred
from these two input clauses.

Example 5.4 Given a unifier, obtain a more general unifier.

Suppose you have two expressions p(x) an p(y). One way to unify these is to substitute any constant
expression for x and y: S = {fred/x, fred/y}. But this is not the most general unifier, because if we
substitute any variable for x and y, we get a more general unifier: G = {z/x, z/y}. The first unifier is a
valid unifier, but it would lessen the generality of inferences that we might want to make.

Let, E = {p(x), p(y)}

Let, S = {fred/x, fred/y}

Let, G = {z/x, z/y}

Now, let S
′

= {fred/z}

Then ES = {p(fred), p(fred)}

and GS
′

= {fred/x, fred/y}

and therefore EGS
′

= {p(fred), p(fred)} = ES. �

So, given a unifier, you can always create a more general unifier. When both of these unifiers are composed
and instantiate the original expression E, you get the same instance as it was obtained with the earlier
unifier.



Lecture 5: January 15, 2015 5-5

{P,Q} {P,¬Q} {¬P,Q} {¬P,¬Q}

{P} {Q}

{¬P}

{}

Figure 5.1: DAG for Theorem Proving.

5.3 Resolution Principle

Recall that a literal, L, is either a propositional letter, P , or the negation, ¬P , of a propositional letter.
A clause is a finite set of literals, {L1, . . . , Lk}, interpreted as the disjunction L1 ∨ · · · ∨ Lk (when k = 0,
this is the empty clause denoted []). A set of clauses, Γ = {C1, . . . , Cn}, is interpreted as the conjunction
C1∧· · ·∧Cn. For short, we write Γ = C1, . . . , Cn. The resolution method is a procedure for checking whether
a set of clauses, Γ, is unsatisfiable. The resolution methods consist in building a certain kind of labeled DAG
(Directed Acyclic Graph) whose leaves are labeled with clauses in Γ and whose interior nodes are labeled
according to the resolution rule.

Given two clauses C = A∪{P} and C′ = B ∪{¬P} (where P is a propositional letter, P /∈ A and ¬P /∈ B),
the resolvent of C and C′ is the clause R = A ∪B obtained by canceling out P and ¬P . A resolution DAG
for Γ is a DAG whose leaves are labeled with clauses from Γ and such that every interior node n has exactly
two predecessors, n1 and n2 so that n is labeled with the resolvent of the clauses labeling n1 and n2. A
resolution refutation for Γ is a resolution DAG with a single root whose label is the empty clause.

Example 5.5 Resolution refutation.

A resolution refutation for the set of clauses

Γ = {{P,Q}, {P,¬Q}, {¬P,Q}, {¬P,¬Q}}.

is shown in figure 5.1.

�

5.3.1 Theorem Proving Formalism

It is a syntactic inference procedure, when applied to clauses, determines, if the satisfied set is unsatisfiable.
Proof is similar to proof by contradiction and deduce [] (i.e., null). If for example, we have set of clauses
(axioms) C1, C2, . . . , Cn, and we want to deduce D, i.e., D is logical consequence of of C1, C2, . . . , Cn. For
this we add ¬D to the set {C1, C2, . . . , Cn}, then we show that set is unsatisfiable by deducing contradiction.

The process of deduction using resolution is given in algorithm 1. Given two clauses C1, C2 with no variables
in common, and if l1 is a literal in C1 and its complement literal l2 is a literal in C2, then l1, l2 can be dropped
and disjunction C is obtained from the remaining part of C1, C2. The C is called resolvent of C1, C2.

Let C1 = ¬P ∨Q, and C2 = ¬Q ∨R, then following can be deduced through resolution,

P ⇒ Q,Q ⇒ R

P ⇒ R
(5.1)



5-6 Lecture 5: January 15, 2015

equivalently,

(¬P ∨Q), (¬Q ∨R)

∴ (¬P ∨R)
(5.2)

It can be easily verified that (¬P ∨Q) ∧ (¬Q ∨R) |= (¬P ∨R), hence (¬P ∨Q) ∧ (¬Q ∨R) ⇒ (¬P ∨R) is
a valid statement. Thus, ¬P ∨ R is inference or the resolvent. Arriving to a proof by above is called proof
by refutation.

Resolution says that if there are axioms of the form ¬P ∨Q and there is another axiom of the form ¬Q∨R,
then ¬P ∨ R logically follows; called the resolvent. Let us see why it is so? When ¬P ∨ Q is True, then
either ¬P is True or Q is True. For other expression, when ¬Q ∨R is True, then either ¬Q is True or R is
True. Then we can say that ¬P ∨R is certainly True. This can be generalized to two expressions, when we
have any number of expressions, but two must be of opposite signs.

5.3.2 Proof by Resolution

To prove a theorem, one obvious strategy is to search forward from the axioms, using sound rules of inference.
Hence, we try to prove a theorem by refutation. It requires to show that negation of a theorem cannot be
True. The steps for a proof by resolution are:

1. Assume that negation of the theorem is True.

2. Try to show that axioms and assumed negation of theorem, together are True, which cannot be True.

3. Conclude that above leads to contradiction.

4. Conclude that theorem is True because its negation cannot be True.

To apply the resolution rule,

1. Find two sentences that contain the same literal, once in its positive form and once in its negative
form, like,

CNF : summer ∨ winter,¬winter ∨ cold,

2. use the resolution rule to eliminate the complement literals from both sentences to get,

CNF : summer ∨ cold.

Algorithm 1 Algorithm-Resolve(Input: α(the theorem to be proved), β(the set of axioms))

1: β = β ∪ {¬α}
2: Γ = clausal form of β
3: while there is a resolvable pair of clauses Ci, Cj ∈ Γ do
4: C = resolve(Ci, Cj)
5: if C = NIL then
6: return “Theorem α is true”
7: end if
8: Γ = Γ ∪ {C}
9: end while

10: Report that theorem is False



Lecture 5: January 15, 2015 5-7

Figure 5.2: Objects on Table.

Example 5.6 Theorem proving using resolution-refutation.

Following axioms are about the observed block relationship shown in figure 5.2.

on(cylinder, box)

on(box, table)

These are already in the clausal form, hence need not to be converted to the clausal form.

It is required to show that object cylinder is above table, i.e., above(cylinder, table), given the the following
rules:

• ∀x∀y[on(x, y) → above(x, y)], and

• ∀x∀y∀z[above(x, y) ∧ above(y, z) → above(x, z)].

After we have gone through the procedure for conversion to clausal form, the above axioms get transformed
to:

• ¬on(u, v) ∨ above(u, v)

• ¬above(x, y) ∨ ¬above(y, z) ∨ above(x, z)

The expression to be proved is “above(cylinder, table)”; its negation is ¬above(cylinder, table). Let us list
all the clauses systematically.

(1) ¬on(u, v) ∨ above(u, v)

(2) ¬above(x, y) ∨ ¬above(y, z) ∨ above(x, z)

(3) on(cylinder, box)

(4) on(box, table)

(5) ¬above(cylinder, table)



5-8 Lecture 5: January 15, 2015

Now, we manually run the algorithm 1 on the clauses (1)-(5), as well as those which would created new, to
unify them according to unification algorithm ??, until we reach to a null resolvent.

We resolve clauses (2) and (5) and bind x to ‘cylinder’and z to ‘table’. Applying the resolution, we get
resolvent (6). Unifier for this is {cylinder/x, table/z}.

(2) ¬above(cylinder, y) ∨ ¬above(y, table) ∨ above(cylinder, table)

(5) ¬above(cylinder, table)

(6) ¬above(cylinder, y) ∨ ¬above(y, table)

Now, we resolve (1) with (6), instantiating u with y and instantiating (called binding) v with ’table’, we get
(7). Unifier for this is {y/u, table/v}.

(1) ¬on(y, table) ∨ above(y, table)

(6) ¬above(cylinder, y) ∨ ¬above(y, table)

(7) ¬on(y, table) ∨ ¬above(cylinder, y)

We use (1) again with (7) with u instantiated to cylinder and v replaced y. Unifier for this is {cylinder/u, y/v}.

(1) ¬on(cylinder, y) ∨ above(cylinder, y)

(7) ¬on(y, table) ∨ ¬above(cylinder, y)

(8) ¬on(cylinder, y) ∨ ¬on(y, table)

Next use (3) and (8), instantiating y to box, with unifier {box/y}. a set with exactly one element

(3) on(cylinder, box)

(8) ¬on(cylinder, box) ∨ ¬on(box, table)

(9) ¬on(box, table)

Finally, the (4) and (9) are resolved to get NIL:

(4) on(box, table)

(9) ¬on(box, table)

(10) NIL

Since we have arrived at the contradiction, so that negation of the theorem: ¬above(cylinder, table) must
be False. Hence the theorem above(cylinder, table) must be True. �


