
Pro
essor Level Design

The pro
essor level design is 
on
erned with the design of CPU, memory,

BUS, and Input - outputs.

0.1 CPU or Pro
essor level 
omponents

The CPU or pro
essor is 
on
erned with the instru
tion sets, their exe-


ution times, program 
ontrol unit, CPU's 
ommuni
ation with external

devi
es.

The Memories are 
on
erned with di�erent te
hnologies, varying 
ost/performan
e.

The memory is divided into:

� Main memory: It has properties like: fast speed, 
omparatively

small size, and it is 
ontrolled by the CPU;

� Se
ondary memory: It is slow, large in size, inexpensive, and 
an


ommuni
ate via main memory to CPU using serial/parallel a

ess.

The �gure 1 shows the inter-
onne
tion of CPU and memory via the

address, data, and 
ontrol buses.

CPU
Address bus

databus

Address bus

databus

Control bus

Control bus memory

Figure 1: Inter
onne
tion of CPU and memory.

Only the the Input/output Devi
es 
an 
ommuni
ate with outside

world through data transdu
ers, and 
an be dire
tly 
ontrolled by CPU

and IOPs (input-output Pro
essors).

1



The Inter
onne
tion networks 
onsists of word level buses, often shared

among the number of devi
es based on priorities, and have asyn
hronous


ommuni
ation with CPU through handshaking, polling, or syn
hronous.

The 
ommuni
ation through bus is in the form of words (many bits in

parallel) and this 
ommuni
ation is 
ontrolled by CPU and IOPs. The

Information is transferred generally in words through Inter
onne
tion net-

works i.e., buses, between memory and IO pro
essors. The buses provide

dynami
 
onne
tion between various 
omponents.

0.2 Instru
tion 
y
le

A ma
hine language program 
onsists sequen
e of instru
tions 
orre-

sponding to the sequen
e of elementary operations performed by the

CPU. These instru
tions remains in the main memory of the 
omputer.

The instru
tions are fet
hed one-by-one by the CPU and exe
uted, i.e.,

the 
oded operations in the instru
tions are performed. Fet
hing and

exe
uting an instru
tion is 
alled �Instru
tion 
y
le�. Thus,

Instruction cycle = fetch cycle+ execute cycle.

begin

fetch

execute

is
interrupt
pending ?

NO

YES

NO

YES

Service
interrupt

are
instructions
waiting

executions?

Instruction

Instruction

Figure 2: CPU Instru
tion Cy
le.

The sequen
e of operations in an instru
tion 
y
le are given in the

�gure 4. Ea
h instru
tion is exe
uted in the form of number of mi
ro-

2 Copyrighted Material.



operations. The duration of a mi
ro-operation is one 
pu 
lo
k-
y
le, we


all it tcpu.

During the exe
ution of a program, a 
pu may be interrupted by the

IO devi
es, to perform some operation with referen
e to the IO devi
es,

whi
h is generally, a data-transfer operation. To perform su
h an op-

erations, a 
pu need to exe
ute a small program, 
alled as �Interrupt

servi
e routine (ISR)�. After fet
hing ea
h instru
tion, its de
oding, and

exe
uting, it 
he
ks if there is any interrupt pending to be served. If it

is yes, the CPU identi�es the interrupting devi
e by 
ertain me
hanism

and exe
utes the 
orresponding ISR. On 
ompletion of the ISR, the CPU

resumes the fet
h and exe
ute of the next instru
tion exa
tly at the pla
e

it suspended the operation. Hen
e, CPU needs to save the address of

that instru
tion some where, generally in the sta
k area of the memory.

The IO devi
es may be treated as ea
h having its address, independent

of the memory lo
ations. In that 
ase the IO is 
alled �isolated IO� or in-

dependent IO. If IO address are addresses just like the memory addresses

and share the address spa
e from the memory lo
ations, the IO is 
alled

�memory mapped IO�. The memory-mapped IO has the advantage that

all the instru
tions whi
h 
an be exe
uted with referen
e to memory lo
a-

tions, 
an also be exe
uted with referen
e to the IO lo
ations. Remember

that, unlike the instru
tion movement between memory and CPU, only

the data movement takes pla
e between the CPU and IO devi
es. Even

if there is program �le saved in a IO devi
e, like hard disk, the movement

of program from disk to memory (
alled loading) or from memory to disk

(
alled saving), it behaves like data movement only. in addition to data

transfer instru
tions, the IO pro
essors do the data formating. as per the

requirements of IO devi
es, like, into BCD or ASCII 
onversion, insertion

of EOL (end of line), EOF (end of �le) 
hara
ters, and insertion of se
tors

numbers, tra
k numbers in 
ase of hard-disk drives.

0.3 CPU Ar
hite
ture

The �gure 3 explains the 
pu ar
hite
ture, 
omprising the ALU (arith-

meti
 and logi
 unit) and program 
ontrol unit (CU), along with some

essential and most 
ommonly used registers, like Address register and

program 
ounter register, data register, instru
tion register, and a

umu-

lator. The a

umulator is sour
e of the data (operand) and destination of

result in all the arithmeti
 and logi
al operations. The program 
ounter

(PC) always holds the address of next instru
tion to be fet
hed from

memory for exe
ution. On fet
hing it, the instru
tion �rst of all land

in the instru
tion register (IR) of the CPU. If an instru
tion operand

Copyrighted Material. 3



does not hold data but holds address of data, then this address is moved

to AR to fet
h the data into DR. Finally, 
ontents of DR is added into

a

umulator register.

As the diagram in �gure 3 indi
ates DR and AR of CPU have interfa
e

with the memory. The address of next instru
tion is maintained in the

PC, but to be sent to the memory, it is loaded into the AR.

b

ALU

PC IR

ctrl ckts

ctrl lines

AC

DR

AR

Program control unit

AC ← f(AC,DR)

Data Processing Unit

T
o

m
ain

m
em

o
ry

an
d

IO
d

ev
ices

b b b

b b

Figure 3: Basi
 building blo
ks of CPU.

One CPU 
y
le, designated as tcpu is smallest mi
ro-operation of CPU,

and equal to the time of one 
lo
k 
y
le. Thus 1/tcpu is maximum 
lo
k

frequen
y at whi
h the CPU 
an be operated.

Exe
ution time for any program is proportional to number of CPU


lo
k 
y
les used in that. Hen
e, if there are n CPU 
y
les spent in a

program, then total exe
ution time is n× tcpu se
onds.

On the similar line we de�ne memory 
y
le tm, whi
h is equal to time

spent between address applied to memory and data released by memory.

There is a large speed gap between CPU 
y
le and memory 
y
le, and

tm/tcpu ≈ 10.

0.3.1 Instru
tion Cy
le

Figure 4 explain in detail as what are the sequen
e of operations in a

instru
tion 
y
le. We assume that there is an �add� instru
tion as the

next instru
tion. The program 
ounter value is loaded into the address

register. Then, memory 
orresponding to this address is a

esses and its


ontent is loaded into the data register. This in fa
t is �add� instru
tion

along with its operands. Subsequently, the op
ode (operation 
ode) of

this instru
tion is moved to instru
tion register, then it is de
oded. By

4 Copyrighted Material.



this time on de
oding the op
ode, 
pu 
omes to know: (i) size of this in-

stru
tion, (ii) whether the operands are with the instru
tion or they are to

be fet
hed, (iii) what operation(s) is to be performed by this instru
tion.

Sin
e, the size of this instru
tion has be
ome known (say l), the pro-
gram 
ounter is in
remented by l to fet
h the next instru
tion. If it is

found by de
oding that it is add instru
tion (add AC, Adr), address of

data (from address register DR) is sent to address register (Adr), and

fet
hed operand (data) is moved into the data register. Then this data is

added into the a

umulator to 
omplete the exe
ution of the instru
tions

(see �g. 4).

Had it been a jump instru
tion, the instru
tion would have 
omprised

the jump address, hen
e this address is loaded into the program 
ounter,

to fet
h the next instru
tion from that lo
ation rather than the next

instru
tion address based on the program 
ounter value.

Instruction: "ADD Acc, Addr"

start

cpu activated? NO

YES

AR <-PC

DR<-M(AR)

IR<-DR(opcode)
PC<-PC+1

decode opcode

add instr.
NO

YES

AR<-DR(addr)

DR<-M(AR)

AC<-AC+DR

JMP inst.
NO

YES

PC<-DR(addr)

b b

fetch
cycle

execute

cycle

Figure 4: Instru
tion Cy
le.

0.4 Inter
onne
t Stru
tures

The Inter
onne
t stru
tures provide 
ommuni
ation path for 
ommuni-


ation between 
pu, memory, and IO devi
es, so that address, data and

Copyrighted Material. 5




ontrol signals 
an move long through these inter
onne
t stru
tures. The

typi
al size of address lines (
alled address bus) is 16, 20, 32, 40, or 48

bits, whi
h has 
apability to a

ess the memory of 216, 220, 232, 240,or248

words. Ea
h word is generally equal to the size of the data bus, and is

usually, 8, 12, 16, 24, 32, 40, 64 bits long. However, there is no dire
t re-

lation between the size of the address bus and size of the word-length. In

more powerful pro
essors, the address and data buses are longer, typi
ally

32-bits ea
h.

b
b

Memory

0

N-1

N
W

o
rd

s
RD

WR

Addr

Data

Data

IO
M

o
d

u
le

RD

WR

Addr

Internal data

External data

Internal data

External data

Interrupts

Figure 5: Inter
onne
t Stru
ture Interfa
es for memory and IO.

The 
ontrol signals are: MRD (memory read), MWR (memory write),

Clo
k, for memory and IORD (IO read), IOWR (IO write), Transfer

ACK, BUS Request, BUS Grant, Interrupt request, interrupt a
knowl-

edgment, Clo
k, and Reset for the IOPs, as shown in the �gure 5. The

�gure 5 shows 
ommonly used interfa
es for memory and IO, whi
h are

to be 
onne
ted to the interfa
e stru
tures.

CPU

Instructions

Data

Interrupt Signals

Address

Control Signals

Data

Address bus

data bus

Control bus

CPU memory IO

Figure 6: Common bus Inter
onne
t Stru
ture.

6 Copyrighted Material.



T1 T2 T3

Clock

Status
lines

Address
lines

Address

Data
lines

Read

Data
lines

Write

enable

Read
cycle

write
cycle

TIMING OF SYNCHRONOUS BUS OPERATION

time

Figure 7: Syn
hronous bus operation

The �gure 6 shows 
ommon bus as interfa
e to 
onne
t CPU, memory

and IO devi
es through a shared medium. Through this bus medium,

only two devi
es 
an 
ommuni
ate to ea
h other at any parti
ular time,

and other devi
es have to wait for their turn. There is some other higher

level logi
 whi
h grants a

ess to the 
ommon bus, out of many 
ontesting

devi
es for bus, out of 
pu, memory, and IO devi
es.

0.5 Syn
hronous Bus Operations

The bus 
ommuni
ation needs to work syn
hronous to the 
lo
k, so that

release and re
ognition of various signals are 
arried out with referen
e

to the 
lo
k 
y
les' rising or falling edges. The �gure 7 shows the syn-


hronous bus operations whi
h are syn
hronous to the CPU 
lo
k for

memory Read/Write 
y
les. O

urren
e of the events, like status lines,

read, write, read-enable are determined by a 
lo
k. All devi
es on the

bus read the 
lo
k line, and all events start at begin of the 
lo
k 
y
le.

The status lines indi
ate whether the present bus 
y
le is is memory read


y
le, memory write 
y
le, op
ode fet
h 
y
le, de
ode 
y
le, or exe
ute


y
le. The address values are released 
onsequent to the 
ompletion of

rising edge of the �rst 
lo
k. Immediately after this, the address enable

Copyrighted Material. 7



line is made true by 
pu to indi
ate that memory / IO is now valid, so

that memory or IO 
an pi
kup this address and return the 
ontent of

that lo
ation. At the rising edge of se
ond 
lo
k pulse, the data is read

by the 
pu (indi
ated by read signal as true), and later the 
pu makes

the read line false by lowering it.

To write the data into the memory at the address released by 
pu, the


pu issues write line true after the data have been released by the 
pu.

The write operation is performed at the rising edge of the write 
ontrol

line. After some time, the 
pu makes the write signal false by lowering

down it.

In Syn
hronous operation the timing of any transition is known in

advan
e as all the operations are in syn
hronous to the 
pu 
lo
k.

The other type of 
pu to memory 
ommuni
ation is Asyn
hronous


ommuni
ation, whi
h depends on the availability data and readiness of

devi
es to initiate bus transition.

The disadvantage of syn
hronous bus operations is that 
pu and mem-

ory are tide down to the 
pu 
lo
k. So, even if the 
pu or memory is fast

for reading / writing, the next event shall wait for the 
ompletion of


urrent 
lo
k 
y
le.

0.6 Asyn
hronous Bus Operations

The asyn
hronous bus operation does not make use of 
pu 
lo
k, hen
e

it 
an operate faster; the speed is de
ided solely by the speed of 
pu and

memory. The operation is also 
alled in hand-shakemode 
ommuni
ation.

O

urren
e of one event on bus follows the other and CPU is master for

data transfer. Syn
hronous is simple, but tied to 
lo
k (less �exible), thus

high performan
e devi
es 
annot 
ontribute. Hen
e, a mix of slow and

fast devi
es 
an work together to have advantage of both.

For 
ompletion of events, handshake signals are ex
hanged between

the memory and 
pu to perform the data 
ommuni
ation. Figure 8 shows

the this operations.

0.7 Buses types and their Analysis

There are number of di�erent types of buses.

1. Inside CPU (CPU Bus or On
hip Bus) is used to 
onne
t registers,

ALU, and 
a
he.

2. System bus or Onboard bus is Between Pro
essor and main memory.

8 Copyrighted Material.



Status
lines

Address
lines

Read

Data
lines

acknowledge

Status
lines

Address
lines

Data
lines

acknowledge

status signals

Statble address

valid data

Status signals

Stable address

Valid data

write

S
y

stem
b
u

s
read

cy
cle

S
y

stem
b
u

s
w

rite
cy

cle

Timings of asynchronous bus operations

(from memory)

1

2

3

4 5

1
2

3
4

Figure 8: Hand-shake operation of data-transfer between 
pu-memory.

3. Peripheral bus 
onne
ts fast peripherals, like graphi
s 
ard, LAN

adapter, with the main memory for high speed data transfer as well

as to 
onne
t slow devi
es. The bus 
onne
ts from dual ported

memory.

As the number of devi
es to be 
onne
ted in
reases, there is need of

longer bus to a

ommodate the large number of devi
es. This results to

propagation delays, and 
oordination problems between devi
es. Also,

more number of devi
es 
ause bottlene
k for data transfer, and for
es to

design wider buses (32 to 64 bits) or more than one buses, so that high

speed devi
es 
an be 
onne
ted on one bus and slower devi
es on other

bus.

0.7.1 Power Loss

Buses are a signi�
ant sour
e of power loss, espe
ially inter
hip buses,

whi
h are often very wide. The standard PC memory bus in
ludes 64

data lines and 32 address lines, and ea
h line requires substantial drivers.

A 
hip 
an expend 15 per
ent to 20 per
ent of its power on these inter
hip

drivers. One approa
h to limiting this swing is to en
ode the address lines

into a Gray 
ode be
ause address 
hanges, parti
ularly from 
a
he re�lls,

are often sequential, and 
ounting in Gray 
ode swit
hes the least num-

ber of signals. Adapting other ideas to this problem is straight forward.

Copyrighted Material. 9



Transmitting the di�eren
e between su

essive address values a
hieves a

result similar to the Gray 
ode. Compressing the information in address

lines further redu
es them. These te
hniques are best suited to inter-


hip signaling be
ause designers 
an integrate the en
oding into the bus


ontrollers.

Code 
ompression results in signi�
ant instru
tion-memory savings if

the system stores the pro- gram in 
ompressed form and de
ompresses it

on the �y, typi
ally on a 
a
he miss. Redu
ing memory size translates

to power savings. It also redu
es 
ode overlays - a te
hnique still used in

many digital- signal pro
essing (DSP) systems�whi
h are another sour
e

of power loss.

0.7.2 Traditional Bus Ar
hite
ture

The �gure 9 shows the traditional bus ar
hite
ture, 
onne
ting all the

di�erent types of devi
es with di�erent 
ommuni
ation speeds to be 
on-

ne
ted together using the same bus.

Processor
Local bus

Cache

Local I/O
Controller

Main

Memory

System Bus

Network SCSI

Expansion
bus

Interface Modem Serial

Expansion bus

Figure 9: traditional bus ar
hite
ture.

0.7.3 High performan
e Bus Ar
hite
ture

The �gure 10 shows the ar
hite
ture for a high-speed bus.

There is another 
lassi�
ations of buses, as follows:

Bus Types:

1. Dedi
ated bus: There is separate address, data buses (it is most


ommon ar
hite
ture).

10 Copyrighted Material.



Processor
Local bus Cache/

bridge

main
memory

SCSI FireWire Graphic Video LAN

FAX Expansion bus
Interface

Modem

Expansion bus

High speed bus

serial

Figure 10: High-speed bus ar
hite
ture.

2. Multiplexed: The �rst address is sent, after some time data is sent.

This is to the number of 
onne
tions in the bus. This 
alled time

division multiplexed. It has the disadvantage that data 
ommuni-


ation speed gets redu
ed, as the same bus is used for a time for

address and for other time for data.

0.7.4 Multipro
essor bus

The �gure 11 shows the ar
hite
ture for multipro
essor bus, where num-

ber of pro
essors and memories are 
onne
ted together through a high-

speed shared bus. Only one pro
essor-memory will be using the bus at

a time. It has the advantage that many pro
essors 
an share number of

memories together. But, there is problem 
alled bus 
ontention, whi
h

arises when more than one pro
essors 
ompetes to a

ess the bus.

In single-bus system bus arbitration is required to resolve the 
on-

tention. The pro
essor that wants to use the bus, submits a request to

�arbitration logi
�. The arbitration logi
 de
ides based on some priority,

as whi
h pro
essor should be granted the bus a

ess during a 
ertain pe-

riod of time. The pro
essor holding the 
ontrol of bus during that time is


alled bus master. The Passing bus mastership is through handshaking,

i.e., there is a bust request, and 
onsequently the bus grant.

0.7.5 Bus Arbiter

The arbiter samples the request on rising edge of 
lo
k, and a prede�ned

algorithm de
ides as whi
h master is next to gain a

ess to the bus.

Following are the algorithm used:

Copyrighted Material. 11



Figure 11: Multipro
essor bus.

Stati
 �xed priority Algorithm

Stati
 �xed priority is a 
ommon s
heduling me
hanism on most 
ommon

buses, where ea
h master is assigned a �xed priority value. When several

masters request simultaneously, the master with the highest priority will

be granted. The advantage of this arbitration is its simple implement and

small area 
ost. The stati
 priority based ar
hite
ture does not provide a

means for 
ontrolling the fra
tion of 
ommuni
ation bandwidth assigned

to a 
omponent. If masters with high priority requests frequently, it will

lead to the starvation of the ones with low priority.

Round-robin Algorithm

Time division multiplexed (TDM) s
heduling divides exe
ution time on

the bus into time slots and allo
ates the time slots to adapters requesting

use of the bus. Ea
h time slot 
an span several physi
al transa
tions

on the bus. A request for use of the bus might require multiple slot

times to perform all required transfers. However, in this ar
hite
ture,

the 
omponents are provided a

ess to the 
ommuni
ation 
hannel in an

interleaved manager, using a two level arbitration proto
ol.

The �rst level of arbitration uses a timing wheel where ea
h slot is

stati
ally reserved for a unique master. In a single rotation of the wheel, a

master that has reserved more than one slot is potentially granted a

ess

to the 
hannel multiple times. If the master interfa
e asso
iated with the


urrent slot has an outstanding request, a single word transfer is granted,

and the timing wheel is rotated by one slot.

To alleviate the problem of wasted slots, a se
ond level of arbitration

is supported. The poli
y is to keep tra
k of the last master interfa
e to

be granted a

ess via the se
ond level of arbitration, and issue a grant to

the next requesting master in a round-robin fashion

Figure 12 shows the arbitration logi
, whi
h is improved over to the

simple round-robin system.

The other algorithms for bus arbitration are:

12 Copyrighted Material.



TDMA

M1

M2

M3

M4M2

M3

M4 Order for Masters:

M1, M2, M3, M4, M2,

M3, M4

Figure 12: Arbitration logi
.

Other algorithms:

� Random priority algorithm

� Equal priority: when two or more requests are made, there is equal


han
e of any one request being pro
essed.

� Stati
 lottery bus arbiter: Here, a probabilisti
 arbitration algo-

rithm implemented in a 
entralized �lottery manager�. The proba-

bility is �xed here.

� Dynami
 lottery bus arbiter: The probability is dynami
ally 
hang-

ing.

� LRU (Least Re
ently Used) Algorithm: The one, given the 
han
e

long ba
k shall be served �rst.

Requesting
bus master

Current
bus master

Bus

busrequest
busgrant
busbusy

request

grant

busy

Figure 13: Bus arbitration logi
.

Figure 13 shows a bus arbitration logi
. The unit requiring the bus


ontrol raises a bus-request signal to arbitration-logi
 who in reply re-

sponds by bus-grant signal.

Copyrighted Material. 13



A Bus arbitration logi
 may be (1) a 
entralized 
ontrol to grant the


ontrol over the bus, or may be (2) distributed. The 
entralized, though

simple, has problem of single-point failure.

0.7.6 Properties of Buses

There are 
ertain important properties is of buses:

� Bus is the most popular 
ommuni
ation pathway among the various


omponents of a 
omputer system.

� Provides 
ost e�e
tive solution

� It provides set of shared 
ommuni
ation links

� Versatile: So that new 
omponents 
an always be added

� It works on broad
ast property

� Disadvantage: It is single shared 
ommuni
ation link (no ba
kup

/ standby), Bandwidth (BW) 
annot in
rease with the in
rease of

number of 
omponents / units 
onne
ted. May some time be
ome


ommuni
ation bottlene
k

� Point-to-point 
ommuni
ation links may be used for large BW re-

quirements (but expensive solution).

0.7.7 Challenges

Following are the Challenges in bus systems whi
h are fa
ed by bus de-

signers:

� Buses are pushed to provide higher data rates. This 
auses problems

of:

(a) Signal re�e
tion, (b) Cross talk, (
) Skew of signal

� Cross talk? Skew Signal?(same signal rea
hes to di�erent pla
es at

di�erent times)

� Bus Physi
s: Ele
tri
al signal travels at �nite speed (typi
ally 5

nano se
 time for one meter travel in 
opper wire). Clo
k frequen
y


annot be arbitrarily in
reased due to problem of signal re�e
tion.

� May produ
e standing wave pattern due to re�e
tion.

14 Copyrighted Material.



� Bus 
an be treated as transmission line. If ZL is impedan
e of line,

and Zo of load, then re�e
tive index is Γ = (ZL − Zo)/(ZL + Zo).
Γ is zero only if ZL = Z0, whi
h is not possible as Z0 is input

impedan
e of a
tive 
omponents. The non-zero re�e
tive index will


ause re�e
tion of signals on the bus.

Exer
ises

1. Determine the maximum speedup of a single-bus multipro
essor

system having N pro
essors if ea
h pro
essor uses the bus for a

fra
tion f of every 
y
le.

2. In order to enhan
e the CPU-Memory intera
tions one solution is

to have an ex
lusive CPU-memory bus, where 
ommuni
ation with

other sub-systems is ex
lusively through one of the memories meant

only for that purpose.

Alternately, one may 
onne
t Bus Adapters using whi
h other

buses whi
h a

ommodate the sub-systems may be developed. Dis-


uss the advantages and disadvantages ea
h of these systems.

3. When Bus Adapters are used for generating more buses, we 
an also

have one su
h bus ex
lusively for memory sub-systems, one fast bus

and a slow bus for appropriate types of I/O devi
es. Sket
h su
h

an arrangement and dis
uss the modes of data transfer between the

main pro
essor-memory bus and ea
h of these di�erent ba
kplane

buses. Also outline how 
ommuni
ation may be established between

units a
ross the di�erent ba
kplane buses.

4. Develop the asyn
hronous interlo
ked two-way 
ommuni
ation pro-

to
ol between a handshaking master and a slave involved in a write


y
le, and sket
h the relevant timing waveforms.

5. Assuming appropriate handshake signals, indi
ate the series of a
-

tions involved in priority arbitration sequen
e, and show how they

mesh in with the on-going parallel a
tion of data transfer.

6. A 
omputer has 64-bit instru
tions, having two �elds: �rst two

bytes are for op
ode, and the rest is immediate operand or operand

address.

(a) What is maximum addressable memory in bytes?

(b) How many bits are required for program 
ounter and for IR?

Copyrighted Material. 15



7. A 
omputer has 16-bit address and 16-bit data-lines.

(a) What is maximum address spa
e?

(b) What is size of ea
h lo
ation in bytes?

(
) What is size of PC, AR, DR, IR?

8. Two mi
ropro
essors have 16- and 32-bit wide external data buses.

Other features are same and bus 
y
les are identi
al.

(a) If all instru
tions and operands are 4 bytes long, by what fa
tor

the maximum data transfer rate di�er?

(b) Repeat above, if half of the instru
tions and op
odes are two-

bytes long.

9. For the syn
hronous read operation, the memory module must pla
e

the data on the bus su�
iently ahead of the falling edge of the Read

signal to allow for the signal settling. The 
lo
k frequen
y is 20 MHz

and Read signal begins to fall in the middle of the se
ond half of

T3.

(a) Determine the length of the memory read 
y
le.

(b) When, at the latest, should memory data be pla
ed on the

bus? Allow 10 ns for settling of data lines.

10. Intel 8088 mi
ropro
essor has read bus timing like the syn
hronous

read/write dis
ussed in the 
lass, but it requires 4 
lo
k 
y
les. The

valid data is on the bus for an amount of time that extends into the

4th 
y
le. Let 
lo
k is 8 Mhz.

(a) What is the maximum data transfer rate?

(b) Repeat above, assume the need to insert one wait state per

byte transferred.

11. 8086 uses 16-bit bus that 
an transfer 2 bytes at a time, provided

that lower byte has even address. However, the 8086 allows both

even- and odd-aligned word operands. If odd aligned word is ref-

eren
ed, two memory 
y
les, ea
h 
onsisting of four bus 
y
les, are

required to transfer the word. Consider an instru
tion on 8086 that

involves two 16-bit operands. How long does it take to fet
h the

operands? Give range of possible answers. The 
lo
k is 4 Mhz and

no wait state is present.

16 Copyrighted Material.


	CPU or Processor level components
	Instruction cycle
	CPU Architecture
	Instruction Cycle

	Interconnect Structures
	Synchronous Bus Operations
	Asynchronous Bus Operations
	Buses types and their Analysis
	Power Loss
	Traditional Bus Architecture
	High performance Bus Architecture
	Multiprocessor bus
	Bus Arbiter
	Properties of Buses
	Challenges


