Processor Level Design

The processor level design is concerned with the design of CPU, memory,
BUS, and Input - outputs.

0.1 CPU or Processor level components

The CPU or processor is concerned with the instruction sets, their exe-
cution times, program control unit, CPU’s communication with external
devices.
The Memories are concerned with different technologies, varying cost/performanc
The memory is divided into:

e Main memory: It has properties like: fast speed, comparatively
small size, and it is controlled by the CPU;

e Secondary memory: It is slow, large in size, inexpensive, and can
communicate via main memory to CPU using serial /parallel access.

The figure [l shows the inter-connection of CPU and memory via the
address, data, and control buses.
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Figure 1: Interconnection of CPU and memory.

----- >
Control bus {4_ R CPU

Only the the Input/output Devices can communicate with outside
world through data transducers, and can be directly controlled by CPU
and IOPs (input-output Processors).
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The Interconnection networks consists of word level buses, often shared
among the number of devices based on priorities, and have asynchronous
communication with CPU through handshaking, polling, or synchronous.
The communication through bus is in the form of words (many bits in
parallel) and this communication is controlled by CPU and IOPs. The
Information is transferred generally in words through Interconnection net-
works i.e., buses, between memory and IO processors. The buses provide
dynamic connection between various components.

0.2 Instruction cycle

A machine language program consists sequence of instructions corre-
sponding to the sequence of elementary operations performed by the
CPU. These instructions remains in the main memory of the computer.
The instructions are fetched one-by-one by the CPU and executed, i.e.,
the coded operations in the instructions are performed. Fetching and
executing an instruction is called “Instruction cycle”. Thus,

Instruction cycle = fetch cycle + execute cycle.
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Figure 2: CPU Instruction Cycle.

The sequence of operations in an instruction cycle are given in the
figure @ Each instruction is executed in the form of number of micro-
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operations. The duration of a micro-operation is one cpu clock-cycle, we
call it t¢py.

During the execution of a program, a cpu may be interrupted by the
10 devices, to perform some operation with reference to the I0 devices,
which is generally, a data-transfer operation. To perform such an op-
erations, a cpu need to execute a small program, called as "Interrupt
service routine (ISR)*“. After fetching each instruction, its decoding, and
executing, it checks if there is any interrupt pending to be served. If it
is yes, the CPU identifies the interrupting device by certain mechanism
and executes the corresponding ISR. On completion of the ISR, the CPU
resumes the fetch and execute of the next instruction exactly at the place
it suspended the operation. Hence, CPU needs to save the address of
that instruction some where, generally in the stack area of the memory.

The IO devices may be treated as each having its address, independent
of the memory locations. In that case the IO is called “isolated I0” or in-
dependent I0. If IO address are addresses just like the memory addresses
and share the address space from the memory locations, the IO is called
“memory mapped [I0”. The memory-mapped IO has the advantage that
all the instructions which can be executed with reference to memory loca-
tions, can also be executed with reference to the 10 locations. Remember
that, unlike the instruction movement between memory and CPU, only
the data movement takes place between the CPU and IO devices. Even
if there is program file saved in a IO device, like hard disk, the movement
of program from disk to memory (called loading) or from memory to disk
(called saving), it behaves like data movement only. in addition to data
transfer instructions, the IO processors do the data formating. as per the
requirements of 10 devices, like, into BCD or ASCII conversion, insertion
of EOL (end of line), EOF (end of file) characters, and insertion of sectors
numbers, track numbers in case of hard-disk drives.

0.3 CPU Architecture

The figure Bl explains the cpu architecture, comprising the ALU (arith-
metic and logic unit) and program control unit (CU), along with some
essential and most commonly used registers, like Address register and
program counter register, data register, instruction register, and accumu-
lator. The accumulator is source of the data (operand) and destination of
result in all the arithmetic and logical operations. The program counter
(PC) always holds the address of next instruction to be fetched from
memory for execution. On fetching it, the instruction first of all land
in the instruction register (IR) of the CPU. If an instruction operand
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does not hold data but holds address of data, then this address is moved
to AR to fetch the data into DR. Finally, contents of DR is added into
accumulator register.

As the diagram in figureBlindicates DR and AR of CPU have interface
with the memory. The address of next instruction is maintained in the
PC, but to be sent to the memory, it is loaded into the AR.
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Figure 3: Basic building blocks of CPU.

One CPU cycle, designated as tcp, is smallest micro-operation of CPU,
and equal to the time of one clock cycle. Thus 1/t.p, is maximum clock
frequency at which the CPU can be operated.

Execution time for any program is proportional to number of CPU
clock cycles used in that. Hence, if there are n CPU cycles spent in a
program, then total execution time is n X t,, seconds.

On the similar line we define memory cycle t,,, which is equal to time
spent between address applied to memory and data released by memory.
There is a large speed gap between CPU cycle and memory cycle, and
tm/tepu = 10.

0.3.1 Instruction Cycle

Figure M explain in detail as what are the sequence of operations in a
instruction cycle. We assume that there is an “add” instruction as the
next instruction. The program counter value is loaded into the address
register. Then, memory corresponding to this address is accesses and its
content is loaded into the data register. This in fact is “add” instruction
along with its operands. Subsequently, the opcode (operation code) of
this instruction is moved to instruction register, then it is decoded. By

4 Copyrighted Material.



this time on decoding the opcode, cpu comes to know: (i) size of this in-
struction, (ii) whether the operands are with the instruction or they are to
be fetched, (iii) what operation(s) is to be performed by this instruction.

Since, the size of this instruction has become known (say [), the pro-
gram counter is incremented by [ to fetch the next instruction. If it is
found by decoding that it is add instruction (add AC, Adr), address of
data (from address register DR) is sent to address register (Adr), and
fetched operand (data) is moved into the data register. Then this data is
added into the accumulator to complete the execution of the instructions
(see fig. M.

Had it been a jump instruction, the instruction would have comprised
the jump address, hence this address is loaded into the program counter,
to fetch the next instruction from that location rather than the next
instruction address based on the program counter value.

Instruction: "ADD Acc, Addr"

fetch
cycle

IR<-DR(opcode)
PC<-PC+1
decode opcode

o

execute

AR<-DR(addr)
DR<-M(AR)

AC<-AC+DR

cycle
PC<-DR(addr)

|<_

Figure 4: Instruction Cycle.

0.4 Interconnect Structures

The Interconnect structures provide communication path for communi-
cation between cpu, memory, and IO devices, so that address, data and
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control signals can move long through these interconnect structures. The
typical size of address lines (called address bus) is 16, 20, 32, 40, or 48
bits, which has capability to access the memory of 216,220 232 240 ;248
words. Each word is generally equal to the size of the data bus, and is
usually, 8, 12, 16, 24, 32, 40, 64 bits long. However, there is no direct re-
lation between the size of the address bus and size of the word-length. In
more powerful processors, the address and data buses are longer, typically
32-bits each.
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Addr —>» E ———> External data
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Figure 5: Interconnect Structure Interfaces for memory and IO.

The control signals are: MRD (memory read), MWR (memory write),
Clock, for memory and IORD (IO read), IOWR (IO write), Transfer
ACK, BUS Request, BUS Grant, Interrupt request, interrupt acknowl-
edgment, Clock, and Reset for the IOPs, as shown in the figure 5l The
figure [5] shows commonly used interfaces for memory and IO, which are
to be connected to the interface structures.

Instructions ———m] [———> Address
Data ——»» (py [——»Control Signals
Interrupt Signals ——»] ——> Data

CPU memory| ; 10
4

< A Address bus
> data bus

> Control bus

Figure 6: Common bus Interconnect Structure.
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TIMING OF SYNCHRONOUS BUS OPERATION
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Figure 7: Synchronous bus operation

The figure @ shows common bus as interface to connect CPU, memory
and IO devices through a shared medium. Through this bus medium,
only two devices can communicate to each other at any particular time,
and other devices have to wait for their turn. There is some other higher
level logic which grants access to the common bus, out of many contesting
devices for bus, out of cpu, memory, and IO devices.

0.5 Synchronous Bus Operations

The bus communication needs to work synchronous to the clock, so that
release and recognition of various signals are carried out with reference
to the clock cycles’ rising or falling edges. The figure [7 shows the syn-
chronous bus operations which are synchronous to the CPU clock for
memory Read/Write cycles. Occurrence of the events, like status lines,
read, write, read-enable are determined by a clock. All devices on the
bus read the clock line, and all events start at begin of the clock cycle.
The status lines indicate whether the present bus cycle is is memory read
cycle, memory write cycle, opcode fetch cycle, decode cycle, or execute
cycle. The address values are released consequent to the completion of
rising edge of the first clock. Immediately after this, the address enable
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line is made true by cpu to indicate that memory / IO is now valid, so
that memory or IO can pickup this address and return the content of
that location. At the rising edge of second clock pulse, the data is read
by the cpu (indicated by read signal as true), and later the cpu makes
the read line false by lowering it.

To write the data into the memory at the address released by cpu, the
cpu issues write line true after the data have been released by the cpu.
The write operation is performed at the rising edge of the write control
line. After some time, the cpu makes the write signal false by lowering
down it.

In Synchronous operation the timing of any transition is known in
advance as all the operations are in synchronous to the cpu clock.

The other type of cpu to memory communication is Asynchronous
communication, which depends on the availability data and readiness of
devices to initiate bus transition.

The disadvantage of synchronous bus operations is that cpu and mem-
ory are tide down to the cpu clock. So, even if the cpu or memory is fast
for reading / writing, the next event shall wait for the completion of
current clock cycle.

0.6 Asynchronous Bus Operations

The asynchronous bus operation does not make use of cpu clock, hence
it can operate faster; the speed is decided solely by the speed of cpu and
memory. The operation is also called in hand-shake mode communication.
Occurrence of one event on bus follows the other and CPU is master for
data transfer. Synchronous is simple, but tied to clock (less flexible), thus
high performance devices cannot contribute. Hence, a mix of slow and
fast devices can work together to have advantage of both.

For completion of events, handshake signals are exchanged between
the memory and cpu to perform the data communication. Figure[§ shows
the this operations.

0.7 Buses types and their Analysis
There are number of different types of buses.

1. Inside CPU (CPU Bus or Onchip Bus) is used to connect registers,
ALU, and cache.

2. System bus or Onboard bus is Between Processor and main memory.
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Timings of asynchronous bus operations
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Figure 8: Hand-shake operation of data-transfer between cpu-memory.
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3. Peripheral bus connects fast peripherals, like graphics card, LAN
adapter, with the main memory for high speed data transfer as well
as to connect slow devices. The bus connects from dual ported
memory.

As the number of devices to be connected increases, there is need of
longer bus to accommodate the large number of devices. This results to
propagation delays, and coordination problems between devices. Also,
more number of devices cause bottleneck for data transfer, and forces to
design wider buses (32 to 64 bits) or more than one buses, so that high
speed devices can be connected on one bus and slower devices on other
bus.

0.7.1 Power Loss

Buses are a significant source of power loss, especially interchip buses,
which are often very wide. The standard PC memory bus includes 64
data lines and 32 address lines, and each line requires substantial drivers.
A chip can expend 15 percent to 20 percent of its power on these interchip
drivers. One approach to limiting this swing is to encode the address lines
into a Gray code because address changes, particularly from cache refills,
are often sequential, and counting in Gray code switches the least num-
ber of signals. Adapting other ideas to this problem is straight forward.
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Transmitting the difference between successive address values achieves a
result similar to the Gray code. Compressing the information in address
lines further reduces them. These techniques are best suited to inter-
chip signaling because designers can integrate the encoding into the bus
controllers.

Code compression results in significant instruction-memory savings if
the system stores the pro- gram in compressed form and decompresses it
on the fly, typically on a cache miss. Reducing memory size translates
to power savings. It also reduces code overlays - a technique still used in
many digital- signal processing (DSP) systems—which are another source
of power loss.

0.7.2 Traditional Bus Architecture

The figure [0 shows the traditional bus architecture, connecting all the
different types of devices with different communication speeds to be con-
nected together using the same bus.

Local bus
Processor | Cache
Local I/O
Controller

Main
Memory

| System Bus

Xpansion

Expansion bus

Figure 9: traditional bus architecture.

0.7.3 High performance Bus Architecture

The figure [I0] shows the architecture for a high-speed bus.
There is another classifications of buses, as follows:

Bus Types:

1. Dedicated bus: There is separate address, data buses (it is most
common architecture).
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Figure 10: High-speed bus architecture.

2. Multiplezed: The first address is sent, after some time data is sent.
This is to the number of connections in the bus. This called time
division multiplezed. It has the disadvantage that data communi-
cation speed gets reduced, as the same bus is used for a time for
address and for other time for data.

0.7.4 Multiprocessor bus

The figure [[1] shows the architecture for multiprocessor bus, where num-
ber of processors and memories are connected together through a high-
speed shared bus. Only one processor-memory will be using the bus at
a time. It has the advantage that many processors can share number of
memories together. But, there is problem called bus contention, which
arises when more than one processors competes to access the bus.

In single-bus system bus arbitration is required to resolve the con-
tention. The processor that wants to use the bus, submits a request to
“arbitration logic”. The arbitration logic decides based on some priority,
as which processor should be granted the bus access during a certain pe-
riod of time. The processor holding the control of bus during that time is
called bus master. The Passing bus mastership is through handshaking,
i.e., there is a bust request, and consequently the bus grant.

0.7.5 Bus Arbiter

The arbiter samples the request on rising edge of clock, and a predefined
algorithm decides as which master is next to gain access to the bus.
Following are the algorithm used:
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Figure 11: Multiprocessor bus.

Static fixed priority Algorithm

Static fixed priority is a common scheduling mechanism on most common
buses, where each master is assigned a fixed priority value. When several
masters request simultaneously, the master with the highest priority will
be granted. The advantage of this arbitration is its simple implement and
small area cost. The static priority based architecture does not provide a
means for controlling the fraction of communication bandwidth assigned
to a component. If masters with high priority requests frequently, it will
lead to the starvation of the ones with low priority.

Round-robin Algorithm

Time division multiplexed (TDM) scheduling divides execution time on
the bus into time slots and allocates the time slots to adapters requesting
use of the bus. Each time slot can span several physical transactions
on the bus. A request for use of the bus might require multiple slot
times to perform all required transfers. However, in this architecture,
the components are provided access to the communication channel in an
interleaved manager, using a two level arbitration protocol.

The first level of arbitration uses a timing wheel where each slot is
statically reserved for a unique master. In a single rotation of the wheel, a
master that has reserved more than one slot is potentially granted access
to the channel multiple times. If the master interface associated with the
current slot has an outstanding request, a single word transfer is granted,
and the timing wheel is rotated by one slot.

To alleviate the problem of wasted slots, a second level of arbitration
is supported. The policy is to keep track of the last master interface to
be granted access via the second level of arbitration, and issue a grant to
the next requesting master in a round-robin fashion

Figure [12 shows the arbitration logic, which is improved over to the
simple round-robin system.

The other algorithms for bus arbitration are:
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Figure 12: Arbitration logic.

Other algorithms:
e Random priority algorithm

e Fqual priority: when two or more requests are made, there is equal
chance of any one request being processed.

o Static lottery bus arbiter: Here, a probabilistic arbitration algo-
rithm implemented in a centralized “lottery manager”. The proba-
bility is fixed here.

e Dynamic lottery bus arbiter: The probability is dynamically chang-
ing.

e LRU (Least Recently Used) Algorithm: The one, given the chance
long back shall be served first.

Requesting Current
bus master bus master
Bus il: j
busrequest
busgrant
busbusy
request: . _ -
| S - -
[ - \
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_yl= 3 e .
_ ? 7
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Figure 13: Bus arbitration logic.
Figure [I3] shows a bus arbitration logic. The unit requiring the bus

control raises a bus-request signal to arbitration-logic who in reply re-
sponds by bus-grant signal.
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A Bus arbitration logic may be (1) a centralized control to grant the
control over the bus, or may be (2) distributed. The centralized, though
simple, has problem of single-point failure.

0.7.6 Properties of Buses

There are certain important properties is of buses:

e Bus is the most popular communication pathway among the various
components of a computer system.

e Provides cost effective solution

e It provides set of shared communication links

e Versatile: So that new components can always be added
e It works on broadcast property

e Disadvantage: It is single shared communication link (no backup
/ standby), Bandwidth (BW) cannot increase with the increase of
number of components / units connected. May some time become
communication bottleneck

e Point-to-point communication links may be used for large BW re-
quirements (but expensive solution).

0.7.7 Challenges

Following are the Challenges in bus systems which are faced by bus de-
signers:

e Buses are pushed to provide higher data rates. This causes problems
of:

(a) Signal reflection, (b) Cross talk, (c¢) Skew of signal

e Cross talk? Skew Signal?(same signal reaches to different places at
different times)

e Bus Physics: Electrical signal travels at finite speed (typically 5
nano sec time for one meter travel in copper wire). Clock frequency
cannot be arbitrarily increased due to problem of signal reflection.

e May produce standing wave pattern due to reflection.
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e Bus can be treated as transmission line. If Z is impedance of line,

and Z, of load, then reflective index is T' = (Z — Z,)/(Zr + Z,).
T" is zero only if Z; = Zjy, which is not possible as Zy is input
impedance of active components. The non-zero reflective index will
cause reflection of signals on the bus.

Exercises

1.

Determine the maximum speedup of a single-bus multiprocessor
system having N processors if each processor uses the bus for a
fraction f of every cycle.

In order to enhance the CPU-Memory interactions one solution is
to have an exclusive CPU-memory bus, where communication with
other sub-systems is exclusively through one of the memories meant
only for that purpose.

Alternately, one may connect Bus Adapters using which other
buses which accommodate the sub-systems may be developed. Dis-
cuss the advantages and disadvantages each of these systems.

When Bus Adapters are used for generating more buses, we can also
have one such bus exclusively for memory sub-systems, one fast bus
and a slow bus for appropriate types of I/O devices. Sketch such
an arrangement and discuss the modes of data transfer between the
main processor-memory bus and each of these different backplane
buses. Also outline how communication may be established between
units across the different backplane buses.

Develop the asynchronous interlocked two-way communication pro-
tocol between a handshaking master and a slave involved in a write
cycle, and sketch the relevant timing waveforms.

Assuming appropriate handshake signals, indicate the series of ac-
tions involved in priority arbitration sequence, and show how they
mesh in with the on-going parallel action of data transfer.

A computer has 64-bit instructions, having two fields: first two
bytes are for opcode, and the rest is immediate operand or operand
address.

(a) What is maximum addressable memory in bytes?

(b) How many bits are required for program counter and for IR?
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10.

11.

16

A computer has 16-bit address and 16-bit data-lines.

(a) What is maximum address space?
(b) What is size of each location in bytes?
(c) What is size of PC, AR, DR, IR?

. Two microprocessors have 16- and 32-bit wide external data buses.

Other features are same and bus cycles are identical.
(a) If all instructions and operands are 4 bytes long, by what factor
the maximum data transfer rate differ?

(b) Repeat above, if half of the instructions and opcodes are two-
bytes long.

. For the synchronous read operation, the memory module must place

the data on the bus sufficiently ahead of the falling edge of the Read
signal to allow for the signal settling. The clock frequency is 20 MHz
and Read signal begins to fall in the middle of the second half of
Ts.

(a) Determine the length of the memory read cycle.

(b) When, at the latest, should memory data be placed on the
bus? Allow 10 ns for settling of data lines.

Intel 8088 microprocessor has read bus timing like the synchronous
read/write discussed in the class, but it requires 4 clock cycles. The
valid data is on the bus for an amount of time that extends into the
4th cycle. Let clock is 8 Mhz.

(a) What is the maximum data transfer rate?

(b) Repeat above, assume the need to insert one wait state per
byte transferred.

8086 uses 16-bit bus that can transfer 2 bytes at a time, provided
that lower byte has even address. However, the 8086 allows both
even- and odd-aligned word operands. If odd aligned word is ref-
erenced, two memory cycles, each consisting of four bus cycles, are
required to transfer the word. Consider an instruction on 8086 that
involves two 16-bit operands. How long does it take to fetch the
operands? Give range of possible answers. The clock is 4 Mhz and
no wait state is present.
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