
COMPILER CONSTRUCTION
(Evaluation Orders for SDD’s)

Prof. K R Chowdhary
Email: kr.chowdhary@jietjodhpur.ac.in

Campus Director, JIET, Jodhpur

Thursday 18th October, 2018

kr chowdhary Code generation 1/ 14



Dependency graphs

“Dependency graphs” are a useful tool for determining an
evaluation order for the attribute instances in a given parse tree. A
dependency graph helps us determine how attributes values can be
computed. Two important classes of SDDs are: “S-attributed”
and the more general “L-attributed” SDDs.

An edge from one attribute instance to another means that the
value of the first is needed to compute the second. Edges express
constraints implied by the semantic rules.

kr chowdhary Code generation 2/ 14



Dependency graphs

A.b

X.c

X.a

B.i

A → XY Y → BC

M

N

Figure 1: Sample Dependency graphs.

kr chowdhary Code generation 3/ 14



Annotated Parse tree and Dependency graph

Example

Synthesize E .val from E1.val and E2.val .

Solution. Consider the
following production and rule:

Production Rule :

E → E1+T

Semantic Rule :

E .val = E1.val+T .val

E

E1 val + T val

val

Node N

Figure 2: E .val is synthesized from
E1.val and E2.val .

kr chowdhary Code generation 4/ 14



SDD for “a * b”

Example

Construct a Dependency graph for the annotated parse tree of
Fig. 3, whose SDD is given in Table 1.

Table 1: An SDD based on a grammar suitable for top-down parsing.

S.No. Production Semantic Rules

1. T → FT ′ T ′.inh= F .val

T .val = T ′.syn

2. T ′
→∗FT ′

1 T ′

1.inh= T ′

1.inh×F .val

T ′.syn = T ′

1.syn

3. T ′
→ ε T ′.syn = T ′.inh

4. F → digit F .val = digit.lexval

kr chowdhary Code generation 5/ 14



Annotated Parse tree

T.val = 24

F.val = 4 T ′.inh = 4

T ′.syn = 24

digit.lexval = 4 ∗ F.val = 6

digit.lexval = 6

T ′

1
.inh = 24

T ′

1
.syn = 24

ε

Figure 3: Annotated parse tree for 4 ∗ 6.

kr chowdhary Code generation 6/ 14



Annotated parse tree and its dependency graph

1 lexval

3 val

digit

F

T 9 val

8 syn

7 syn
T ′

T ′

ε

2 lexval

digit

F

∗

4 val

inh

inh 5

6

Figure 4: Dependency graph (→) and annotated parse (...) tree of Fig. 3.

kr chowdhary Code generation 7/ 14



Ordering the evaluation of Attributes

If the dependency graph has an edge from node M to node N,
then the attribute corresponding to M must be evaluated
before the attribute of N.

Sequences of nodes N1, N2, ..., Nk such that if there is an
edge of the dependency graph from Ni to Nj ; where i < j .
Such an ordering transforms a directed graph into a linear
order, called topological sort of the graph.

If there is any cycle in the graph, then there are no topological
sorts possible. Since there are no cycles, we can surely find a
node with no edge entering. For if there were no such node,
we could proceed from predecessor to predecessor until we
came back to some node we had already seen, yielding a cycle.

kr chowdhary Code generation 8/ 14



Topological Sort

Example

Topological Sort.

The dependency graph of Fig. 4 has no cycles. One
topological sort is the order in which the nodes have already
been numbered: 1,2,. . . ,9.

Every edge of the graph goes from a node to a
higher-numbered node, so this order is surely a topological
sort. The other topological sort is 1,3,5,2,4,6,7,8,9.

kr chowdhary Code generation 9/ 14



S-Attributed Definitions

Translations can be implemented using classes of SDD’s that
guarantee an evaluation order, since they do not permit
dependency graphs with cycles.

Definition

An SDD is S-attributed if every attribute is synthesized.

Example

The SDD of Table. 2 is an example of an S-attributed definition.
Each attribute, L.val , E .va1, T .val , and F .val is synthesized.

(See the table in next slide.)

kr chowdhary Code generation 10/ 14



S-Attributed Definitions

Table 2: Syntax-directed definition of a simple desk calculator
(S-attributed).

Production Semantic Rules

1. L→ E n L.val = E .val

2. E → E1+T E .val = E1.val+T .val

3. E → T E .val = T .val

4. T → T1 ∗F T .val = T1.val ×F .val

5. T → F T .val = F .val

6. F → (E ) F .val = E .val

7. F → digit F .val = digit.lexval

When an SDD is S-attributed, we can evaluate its attributes in any
bottom-up order of the nodes of the parse tree. 2

kr chowdhary Code generation 11/ 14



L-Attributed Definitions

For L-attributed definitions, edges of dependency graph
corresponding to the attributes can go from left to right in
productions. An attribute must be either

1 Synthesized, or

2 Inherited, but with the rules limited as follows. let
A→ X1X2...Xn, and an inherited attribute Xi .a is computed
by a rule associated with this production. Then the rule may
use only:

1 Inherited attributes associated with the head A.
2 Either inherited or synthesized attributes associated with the

occurrences of symbols X1, X2, ... , Xi−1 occurring to the left
of Xi .

3 Inherited or synthesized attributes associated with of Xi itself,
such that there are no cycles in a dependency graph of this Xi .

kr chowdhary Code generation 12/ 14



L-Attributed Definitions

Theorem

Show that the SDD given in Table 1 is L-attributed.

Proof.

1 The SDD in Table 1 is L-attributed. To see why, consider the
semantic rules for inherited attributes: 1 and 2.

2 The first of these rules defines the inherited attribute T ′.inh

using only F .val , and F appears to the left of T ′ in the
production body, as required. The second rule defines T ′

1.inh

using the inherited attribute T ′.inh associated with the head,
and F .va1, where F appears to the left of T ′

1 in the
production body.

3 In each of these cases, the rules use information “from above
or from the left ,” as required by the class. The remaining
attributes are synthesized. Hence, the SDD is L-attributed. 2

kr chowdhary Code generation 13/ 14



L-Attributed Definitions

Example

Any SDD containing the following production and rules cannot be
L-attributed:

Production : A→ BC

Semantic Rules : A.s =
B .b;B .i = f (C .c ,A.s)
Solution. The first rule,
A.s = B .b, is a legitimate rule in
either an S-attributed or
L-attributed SDD. It defines a
synthesized attribute A.s in
terms of an attribute b at child
B (that is, a symbol within the

production body).
The second rule defines an
inherited attribute B .i , so the
entire SDD cannot be
S-attributed. Further, although
the rule is legal, the SDD
cannot be L-attributed, because
the attribute C .c is used to help
define B .i , and C is to the right
of B in the production body. 2

kr chowdhary Code generation 14/ 14


