
COMPILER CONSTRUCTION
(Intermediate Code Generation)

Prof. K R Chowdhary
Email: kr.chowdhary@jietjodhpur.ac.in

Campus Director, JIET, Jodhpur

Thursday 18th October, 2018

kr chowdhary Code generation 1/ 12



Introduction

In the analysis-synthesis model of a compiler, the front end
analyzes a source program and creates an intermediate
representation, from this onward the back end works and
generates the target code.

With a properly defined intermediate representation, a
compiler for any language i and any machine j can then be
built by combining the front end for language i with the back
end for machine j .

For simplicity, we assume that a compiler front end is
organized as shown in Fig. 1, where parsing, static checking,
and intermediate-code generation are done sequentially;
sometimes they can be combined and folded into parsing.

kr chowdhary Code generation 2/ 12



Compiler front end

Static checking includes type checking, which ensures that
operators are applied to compatible operands. It also includes
any syntactic checks

Parsing Code
Checking

Intermediate
Code

generation

Code
Generation

Front End back end

Figure 1: Logical structure of a compiler front end.

There can be a wide range of intermediate representations,
including syntax trees and three-address code. The term
“three-address code” comes from instructions of the form
x = y op x

kr chowdhary Code generation 3/ 12



A sequence of intermediate representations

In the process of translating a program in a given source
language into code for a given target machine, a compiler may
construct a sequence of intermediate representations

Source

Program

High Level

Intermediate

Representation

Low level

Intermediate

Representation

Target

Code

Figure 2: A compiler might use a sequence of intermediate
representations.

A low-level representation is suitable for machine-dependent
tasks like register allocation and instruction selection.
Three-address code can range from high-level to low-level,

kr chowdhary Code generation 4/ 12



Assembly code vs. intermediate representation

For example the following sequence of statements are close to
the assembly language.

label1 : xi = yi + zi

i = i +1

if x < 100 goto label1

next statement

The choice or design of an intermediate representation varies
from compiler to compiler. An intermediate representation
may either be an actual language or it may consist of internal
data structures that are shared by phases of the compiler.

kr chowdhary Code generation 5/ 12



Applications of Syntax-Directed Translation

The main application of SDD is in construction of syntax
trees. Since some compilers use syntax trees as an
intermediate representation, a common form of SDD turns its
input string into a tree.

We consider two SDD’s for constructing syntax trees for
expressions. The first, an S-attributed definition, which is
suitable for use during bottom-up parsing. The second,
L-attributed,

Construction of Syntax Trees. A syntax-tree node representing
an expression “E1+E2” has label + and two children
representing the subexpressions E1 and E2.

We can implement the nodes of a syntax tree by objects with
a suitable number of fields. Each object will have an op field

kr chowdhary Code generation 6/ 12



Variant of Syntax Trees: DAG

A directed acyclic graph (hereafter called a DAG) for an
expression identifies the common subexpressions
(subexpressions that occur more than once) of the expression.

Like the syntax tree for an expression, a DAG has leaves
corresponding to atomic operands and interior codes
corresponding to operators. The difference is that a node N in
a DAG has more than one parent if N represents a common
subexpression;

kr chowdhary Code generation 7/ 12



Construction of DAG

Example

Construct DAG for the expression:

a+ a ∗ (b− c)+ (b− c)∗d .

+

∗

−
a

b c

d

+

∗

Figure 3: Dag for the expression a+ a∗ (b− c)+ (b− c)∗d .

kr chowdhary Code generation 8/ 12



Construction of DAG...

Figure 3 shows the DAG for above expression. The leaf for a
has two parents, because a appears twice in the expression.
The two occurrences of the common subexpression b− c are
represented by one node, the node labeled −.

The SDD of Table 1 can be used to construct either syntax
trees or a DAG’s. The functions Leaf and Node, create a
fresh node each time they are called. It will construct a DAG
if, before creating a new node, these functions first check
whether an identical node already exists.

kr chowdhary Code generation 9/ 12



Construction of DAG...

Table 1: Syntax-directed definition to produce syntax trees or DAG’s

S.No. Production Semantic Rules

1) E → E1+T E .node = new Node(′+′,E .node,T .node)
2) E → E1−T E .node = new Node(′−′,E .node,T .node)
3) E → T E .node = T .node
4) T → (E ) T .node = E .node
5) T → id T .node = new Leaf (id , id .entry)
6) T → num T .node = new Leaf (num,num.val)

If a previously created identical node exists, the existing node is
returned. For instance, before constructing a new node,
Node(op, left, right) we check whether there is already a node with
label op, and children left and right, in that order. If so, Node
returns the existing node; otherwise, it creates a new node.

kr chowdhary Code generation 10/ 12



Construction of DAG...

Table 2: Steps for constructing the DAG of Fig. 3 for
a+ a∗ (b− c)+ (b− c)∗d

1) p1 = Leaf (id ,entry -a)
2) p2 = Leaf (id ,entry -a) = p1
3) p3 = Leaf (id ,entry -b)
4) p4 = Leaf (id ,entry -c)
5) p5 = Node(′−′,p3,p4)
6) p6 = Node(′∗′,p1,p5)
7) p7 = Node(′+′,p1,p6)
8) p8 = Leaf (id ,entry -b) = p3
9) p9 = Leaf (id ,entry -c) = p4
10) p10 = Node(′−′,p3,p4) = p5
11) p11 = Node(id ,entry -d)
12) p12 = Node(′∗′,entry -d)
13) p13 = Node(′+′,p7,p12)

kr chowdhary Code generation 11/ 12



Constructing a DAG

Example

Construct a Dag (i.e., Fig. 3) for the expression
a+ a ∗ (b− c)+ (b− c)∗d .

Solution. The sequence of steps shown in Table 2 constructs the
DAG of Fig. 3, provided Node and Leaf return an existing node, if
possible. We assume that entry-a points to the symbol-table entry
for a, and similarly for the other identifiers.
When the call to Leaf(id, entry-a) is repeated at step 2, the node
created by the previous call is returned, so p2 = p1. Similarly, the
nodes returned at steps 8 and 9 are the same as those returned at
steps 3 and 4 (i.e., p8 = p3 and p8 = p4). Hence the node returned
at step 10 must be the same at that returned at step 5; i.e., p10 =
p9. 2

kr chowdhary Code generation 12/ 12


