
7CS5A COMPILER CONSTRUCTION (Code Generation)

Lecture 11: Oct. 16, 2018

Instructor: K.R. Chowdhary : Professor of CS

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal

publications. They may be distributed outside this class only with the permission of the

Instructor.

11.1 Introduction

The final phase in compiler is the code generation. It takes as input the intermediate rep-
resentation produced by the front end of the compiler, along with relevant symbol table in-
formation, and produces as output a semantically equivalent target program (see Fig. 11.1).

Front end Code
optimization

Code
Generation

Source

Program

Intermediate

Code

Intermediate

Code

target

Program

Figure 11.1: Position of code generator.

There are too many requirements imposed on code generator. The target program (machine
code) must preserve the semantics of the source program and be of high quality; that is, it
must make effective use of the available resources of the target machine, like, CPU, memory,
registers, etc. Moreover, the code generating program it self must run efficiently.

The challenge is that, mathematically, the problem of generating an optimal target program
for a given source program is undecidable; many of the subproblems encountered in code
generation such as register allocation are computationally intractable. In practice, we must
be content with heuristic techniques that generate good, but not necessarily an optimal,
code. Fortunately, heuristics have matured enough that a carefully designed code generator
can produce code that is several times faster than code produced by a naive one.

Compilers that need to produce efficient target programs, include an optimization phase
prior to code generation. The optimizer maps the intermediate representation into inter-
mediate representation from which more efficient code can be generated. In general, the
code-optimization and code-generation phases of a compiler, often referred to as the back
end, may require multiple passes over the intermediate representation before generating
the target program. The techniques presented in the following can be used irrespective of
whether or not an optimization phase occurs before code generation.

A code generator has three primary tasks: instruction selection, register allocation and
assignment, and instruction ordering. Instruction selection involves choosing appropriate
target-machine instructions to implement the intermediate representation statements. Reg-
ister allocation and assignment involves deciding what values to keep in which registers.
Instruction ordering involves deciding in what order to schedule the execution of instruc-
tions.

11-1



11-2 Lecture 11: Oct. 16, 2018

11.2 Construction of Basic Blocks and Flow Graph

The graph representation of intermediate code is helpful for discussing code generation. To
begin with, the graph is not constructed explicitly by a code-generation algorithm. Code
generation is benefited from context. For example, we can do a better job of register
allocation if we know how values are defined and used. We can select the instruction in a
better way, by looking at sequences of three-address statements. The basic block and flow
graph representation is done as follows:

1. Partition the intermediate code into basic blocks, which are maximal sequences of
consecutive three-address instructions with the following properties

(a) The flow of control can only enter the basic block through the first instruction in
the block. That is, there are no direct jumps to enter into the middle of a block.

(b) Control will leave the block without halting in the block or branching, from inside
of a block exiting from the last instruction in the block.

2. The basic blocks become the nodes of a flow graph, whose edges indicate which blocks
follow to what other blocks.

11.2.1 Basic Blocks Algorithm

Our first job is to partition a sequence of three-address instructions into basic blocks. We
begin a new basic block with the first instruction and keep adding instructions until we meet
either a jump, a conditional jump, or a label on the following instruction. In the absence of
jumps and labels, control proceeds sequentially from one instruction to the next. This idea
is formalized in the following algorithm.

Algorithm-1: Partitioning three-address instructions set into basic blocks.

INPUT: A sequence of three-address instructions.

OUTPUT: A list of the basic blocks, such that each instruction is assigned to exactly one
basic block.

METHOD: First, we identify those instructions in the intermediate code that are leader

instructions, that is, the first instructions in some basic block. The rules for finding leaders
are:

1. The first three-address instruction in the intermediate code is a leader.

2. Any instruction that is the target of a conditional or unconditional jump is a leader.

3. Any instruction that immediately follows a conditional or unconditional jump is a
leader.

Then, for each leader, its basic block consists of itself and all instructions up to but not
including the next leader or the end of the intermediate program. �



Lecture 11: Oct. 16, 2018 11-3

Example 11.1 Intermediate code to set a 10× 10 matrix to an identity matrix.

Solution. Consider the pseudocode as below, which turns a 10× 10 matrix into an identity
matrix.

for i from 1 to 10 do

for j from 1 to 10 do

a[i,j] = 0.0;

for i from 1 to 10 do

a[i,i] = 1.0;

Corresponding to above pseudo-code, the intermediate code in Table 11.1 turns a 10 × 10
matrix a into an identity matrix. In generating the intermediate code, we have assumed
that the real-valued array elements take 4 bytes each, and that the matrix a is stored in
row-major form (first row is stored, element by element, then second row, and so on). Note
that j is column counter and i is row counter.

Table 11.1: Intermediate code to set the 10× 10 matrix a to an identity matrix
1) i = 1
2) j = 1
3) t1 = 10 ∗ i
4) t2 = t1 + j
5) t3 = 4 ∗ t2
6) t4 = t3− 44
7) a[t4] = 0.0
8) j = j + 1
9) if j <= 10 goto (3)

10) i = i+ 1
11) if i < 10 goto (2)
12) i = 1
13) t5 = i− 1
14) t6 = 44 ∗ t5
15) a[t6] = 1.0
16) i = i+ 1
17) if i <= 10 goto (13)

First, instruction 1 is a leader by rule (1) of Algorithm 1. To find the other leaders, we
first need to find the jumps. In this example, there are three jumps, all conditional, at
instructions 9, 11, and 17. By rule (2), the targets of these jumps are leaders; they are
instructions 3, 2, and 13, respectively. Then, by rule (3), each instruction following a jump
is a leader; those are instructions 10 and 12. Note that no instruction follows 17 in this
code, but if there were code following, the 18th instruction would also be a leader.

We conclude that the leaders are instructions 1, 2, 3, 10, 12, and 13. The basic block of each
leader contains all the instructions from itself until just before the next leader. Thus, the
basic block of 1 is just 1, for leader 2 the block is just 2. Leader 3, however, has a basic
block consisting of instructions 3 through 9, inclusive. Instruction 10’s block is 10 and 11;
instruction 12’s block is just 12 and instruction 13’s block is 13 through 17. �



11-4 Lecture 11: Oct. 16, 2018

11.2.2 Liveness and Next-Use

For generating good code, it is essential to know when the value of a variable will be used.
If the value of a variable, currently in a register will never be referenced subsequently, then
that register can be assigned to another variable.

The use of a name in a three-address statement is defined as follows: Let a three-address
statement i assigns a value to variable x. If statement j has x as an operand, and control
can flow from statement i to j along a path that has no intervening assignments to x, then
we say statement j uses the value of x computed at statement i. We further say that x is
live at statement i.

We wish to determine for each three-address statement x = y + z what the next uses of x,
y, and z are. For the present, we do not concern ourselves with uses outside the basic block
containing this three-address statement.

Our algorithm to determine liveness and next-use information makes a back-ward pass over
each basic block. We store the information in the symbol table. We can easily scan a
stream of three-address statements to find the ends of basic blocks as in Algorithm 1. Since
procedures can have arbitrary side effects, we assume for convenience that each procedure
call starts a new basic block.

Algorithm 2. Determining the liveness and next-use information for each statement in a
basic block.

Input. A basic block B of three-address statements. We assume that the symbol table
initially shows all nontemporary variables in B as being live on exit.

Output. At each statement i : x = y + z in B, we attach to i the liveness and next-use
information of x, y, and z.

Method. We start at the last statement in B and scan backwards to the beginning of B.
At each statement i : x = y + z in B, we do the following:

1. Attach to statement i the information currently found in the symbol table regarding
the next use and liveness of x, y, and z.

2. In the symbol table, set x to “not live” and “no next use.”

3. In the symbol table, set y and z to “live” and the next uses of y and z to i.

Here we have used “+” as a symbol representing any operator. If the three-address statement
i is of the form x = +y or x = y, the steps are the same as above, ignoring z. Note that the
order of steps (2) and (3) may not be interchanged because x may be y or x. �

11.2.3 Flow Graph

Once an intermediate-code program is partitioned into basic blocks, we represent the flow
of control between them by a flow graph. The nodes of the flow graph are the basic blocks.
There is an edge from block B to block C if and only if it is possible for the first instruction



Lecture 11: Oct. 16, 2018 11-5

in block C to immediately follow the last instruction in block B. There are two ways that
such an edge could be justified:

• There is a conditional or unconditional jump from the end of B to the beginning of
C.

• C immediately follows B in the original order of the three-address instructions, and
B does not end in an unconditional jump.

We say that B is a predecessor of C, and C is a successor of B. Often we add two nodes,
called the entry and exit in the flow graph, which are not executable intermediate instruc-
tions. There is an edge from the entry to the first executable node of the flow graph, i.e.,
to the basic block that comes from the first instruction. There is an edge to the exit from
any basic block that contains an instruction. If the final instruction of the program is a
conditional jump, then the block containing the final instruction of the program is one
predecessor of the exit.

Example 11.2 Construct a flow-graph from intermediate code in Table 11.1.

Solution. The set of basic blocks constructed in Table 11.1 yields the flow graph of Fig. 11.2.

Entry

i = 1

j = 1

t1 = 10 ∗ i
t2 = t1 + j

t3 = 4 ∗ t2
t4 = t3− 44

j = j + 1

if i <= 10 goto B3

i = i+ 1
if i <= 10 goto B2

i = 1

t5 = i− 1
t6 = 44− t5
a[t6] = 1.0

i = i+ 1
if i <= 10 got B6

Exit

B1

B2

B3

B4

B5

B6

Figure 11.2: Flow graph from Table 11.1.

The entry points to the basic block B1, as B1 contains the first instruction of the program.
The only successor of B1 is B2, because B1 does not end in an unconditional jump, and the
leader of B2 immediately follows the end of B1.



11-6 Lecture 11: Oct. 16, 2018

Block B3 has two successors. One is itself, because the leader of B3, instruction 3, is the
target of the conditional jump at the end of B3, instruction 9. The other successor is B4,
because control can fall through the conditional jump at the end of B3 and next enter the
leader of B4. Only B6 points to the exit of the flow graph, since the only way to get to code
that follows the program from which we constructed the flow graph is to fall through the
conditional jump that ends B6. �

11.2.4 Representation of Flow Graphs

First, note from Fig. 11.2 that in the flow graph, it is normal to replace the jumps to
instruction numbers or labels by jumps to basic blocks. Recall that every conditional or
unconditional jump is directed to the leader instruction of some basic block. The reason
for this change is that after constructing the flow graph, it is common to make substantial
changes to the instructions in the various basic blocks. If jumps were to instructions, we
would have to fix the targets of the jumps every time one of the target instructions was
changed.

Flow graphs, being quite ordinary graphs, can be represented by any of the data structures
appropriate for graphs. The content of nodes (basic blocks) need their own representation.
We might represent the content of a node by pointer to the leader, together with a count
of the number of instructions or a second pointer to the last instruction. However, since we
may be changing the number of instructions in a basic block frequently, it is likely to be
more efficient to create a linked list of instructions for each basic block.

11.2.5 Loops

The loops in programs are due to programming-language constructs like while-statements,
do-while-statements, and for-statements naturally give rise to loops in programs. Since, vir-
tually every program spends most of its time in executing its loops, it is especially important
for a compiler to generate good code for loops. Many code transformations depend upon
the identification of “loops” in a flow graph. We say that a set of nodes L in a flow graph
is a loop if

1. There is a node in L called the loop entry with the property that no other node in
L has a predecessor outside L. That is, every path from the entry of the entire flow
graph to any node in L goes through the loop entry.

2. Every node in L has a nonempty path, completely within L, to the entry of L.

Example 11.3 Analyse the loops in flow-graph in Figure 11.2.

Solution. The flow graph of Fig. 11.2 has three loops:

1. B3 by itself.

2. B6 by itself.

3. {B2, B3, B4}



Lecture 11: Oct. 16, 2018 11-7

The first two are single nodes with an edge to the node itself. For instance, B3 forms a
loop with B3 as its entry. Note that the second requirement for a loop is that there be a
nonempty path from B3 to itself. Thus, a single node like B2, which does not have an edge
B2 → B2, is not a loop, since there is no nonempty path from B2 to itself within {B2}

The third loop, L = {B2, B3, B4}, has B2 as its loop entry. Note that among these three
nodes, only B2 has a predecessor, B1, that is not in L. Further, each of the three nodes has
a nonempty path to B2 staying within L. For instance, B2 has the path B2 + B3 + B4 +
B2. �

11.3 Optimization of Basic Blocks

We can often obtain a substantial improvement in the running time of code merely by
performing local optimization within each basic block by itself. More thorough global opti-
mization, which looks at how information flows among the basic blocks of a program.

11.3.1 The DAG Representation of Basic Blocks

Many important techniques for local optimization begin by transforming a basic block into
a DAG (directed acyclic graph). The idea of DAG extends naturally to the collection of
expressions that are created within one basic block. We construct a DAG for a basic block
as follows:

1. There is a node in the DAG for each of the initial values of the variables appearing in
the basic block.

2. There is a node N associated with each statement s within the block. The children of
N are those nodes corresponding to statements that are the last definitions, prior to
s, of the operands used by s.

3. Node N is labeled by the operator applied at s, and also attached to N is the list of
variables for which it is the last definition within the block.

4. Certain nodes are designated output nodes. These are the nodes whose variables are
live on exit from the block; that is, their values may be used later, in another block
of the flow graph. Calculation of these “live variables” is a matter for global flow
analysis.

The DAG representation of a basic block lets us perform several code-improving transfor-
mations on the code represented by the block.

1. We can eliminate local common subexpressions, that is, instructions that compute a
value that has already been computed.

2. We can eliminate dead code, that is, instructions that compute a value that is never
used.

3. We can reorder statements that do not depend on one another; such reordering may
reduce the time a temporary value needs to be preserved in a register.



11-8 Lecture 11: Oct. 16, 2018

4. We can apply algebraic laws to reorder operands of three-address instructions, and
sometimes it simplify the computation.

11.3.2 Finding Local Common Subexpressions

Common subexpressions can be detected by noticing, as a new node M is about to be
added, whether there is an existing node N with the same children, in the same order, and
with the same operator. If so, N computes the same value as M and may be used in its
place. This technique was introduced as the “value-number” method of detecting common
subexpressions earlier.

Example 11.4 Construct the DAG for the block and find the common subexpressions.

a = b+ c

b = a− d

c = b+ c

d = a− d (11.1)

Solution. The DAG is shown in Fig. 11.3. When we construct the node for the third
statement c = b + c, we know that the use of b in b + c refers to the node of Fig. 11.3
labeled −, because that is the most recent definition of b. Thus, we do not confuse the
values computed at statements one and three.

+

−

+

b0 c0

a
d0

c

b, d

Figure 11.3: DAG for basic block in equation 11.1.

However, the node corresponding to the fourth statement d = a− d has the operator − and
the nodes with attached variables a and d0 as children. Since the operator and the children
are the same as those for the node corresponding to statement two, we do not create this
node, but add d to the list of definitions for the node labeled −. �

It might appear that, since there are only three nonleaf nodes in the DAG of Fig. 11.3, the
basic block in Example 11.4 can be replaced by a block with only three statements. In fact,
if b is not live on exit from the block, then we do not need to compute that variable, and
can use d to receive the value represented by the node labeled −. in Fig. 11.3. The block
then becomes

a = b+ c

d = a− d

c = d+ c (11.2)



Lecture 11: Oct. 16, 2018 11-9

However, if both b and d are live on exit, then a fourth statement must be used to copy the
value from one to the other.

Example 11.5 Basic Block optimization for

a = b+ c

b = b− d

c = c+ d

e = b+ c (11.3)

Solution. When we look for common subexpressions, we really are looking for expressions
that are guaranteed to compute the same value, no matter how that value is computed.
Thus, the DAG method will miss the fact that the expression computed by the first and
fourth statements in the sequence in equation 11.3 is the same, namely b0 + c0. That is,
even though b and c both change between the first and last statements, their sum remains
the same, because b+ c = (b−d)+(c+d). The DAG for this sequence is shown in Fig. 11.4,
but does not exhibit any common subexpressions. However, algebraic identities applied to
the DAG, are discussed later in next parts, may expose the equivalence. These entities are
basically, x+ 0 = 0 + x = x, x/1 = x, etc.

+ e

+ a − b + c

b0 c0 d0

Figure 11.4: DAG for basic block in equation 11.3.

�

11.3.3 Dead Code Elimination

The operation on DAG’s that corresponds to dead-code elimination can be implemented as
follows. We delete from a DAG any root (node with no ancestors) that has no live variables
attached. Repeated application of this transformation will remove all nodes from the DAG
that correspond to dead code.

Example 11.6 Dead Code Elimination.

Solution. If, in Fig. 11.4, a and b are live but c and e are not, we can immediately remove
the root labeled e. Then, the node labeled c becomes a root and can be removed. The roots
labeled a and b remain, since they each have live variables attached. �

11.3.4 Representation of Array References

At first glance, it might appear that the array-indexing instructions can be treated like any
other operator. Consider for instance the sequence of three- address statements:



11-10 Lecture 11: Oct. 16, 2018

x = a[i]

a[j] = y

z = a[i]

If we think of a[i] as an operation involving a and i, similar to a+ i, then it might appear
as if the two uses of a[i] were a common subexpression. In that case, we might be tempted
to “optimize” by replacing the third instruction z = a[i] by the simpler z = x. However,
since j could equal i, the middle statement may in fact change the value of a[i]; thus, it is
not legal to make this change.

The proper way to represent array accesses in a DAG is as follows.

1. An assignment from an array, like x = a[i], is represented by creating a node with
operator = [] and two children representing the initial value of the array, a0 in this
case, and the index i. Variable x becomes a label of this new node.

2. An assignment to an array, like a[j] = y, is represented by a new node with operator
and three children representing a0, j and y. There is no variable labeling this node.
What is different is that the creation of this node kills all currently constructed nodes
whose value depends on a0. A node that has been killed cannot receive any more
labels; that is, it cannot become a common subexpression.

Example 11.7 Construct a DAG for a sequence of array assignments, for basic block:

x = a[i]

a[j] = y

z = a[i]

Solution. The DAG is is shown in Fig. 11.5.

= []

= [] [] =

a0 i0 j0 y0

z

x

Figure 11.5: DAG for sequence of array assignments.

The node N for x is created first, but when the node labeled [] = is created, N is killed.
Thus, when the node for x is created, it cannot be identified with N , and a new node with
the same operands a0 and i0 must be created. �

11.4 Exercises

1. What are the challenges in code generation phase of compiler, in respect of following:



Lecture 11: Oct. 16, 2018 11-11

(a) Code generator it self

(b) Language to be compiled

(c) The hardware for which it is supposed to generate the code

2. In the code generation phase, what are the major subareas for applying the heuristics?

3. What are the primary tasks of the code generator?

4. Why it is important to segment the intermediate code into blocks?

5. Define block, and flow graph.

6. Below given is simple matrix addition program.

for(i=0; i < 10; i++}

c[i][j] = a[i][j] + b[i][j];

7. Translate the program into three-address statements of the type. Assume the matrix
entries are numbers that require 4 bytes, and that matrices are stored in column-major
order.

8. Write the algorithm in pseudo code to determine liveness of variables in a block.

9. Construct the flow graph for your code from above.

10. Identify the loops in your flow graph from above

11. What are the advantages of representing blocks of code using DAGs?

12. What kind of optimizations are possible in intermediate code using DAGs?

13. Write your own version of algorithm for dead-code elimination?

14. How you will determine whether a value is live or not on exit of a block?

15. Write the algorithm in pseudo code to construct the basic blocks out of a given program
in intermediate representation.

16. Modify the code in Table 11.1 so that it works for 8-byte data values, consider the
array of 5× 5 of real numbers.

17. Modify the Table 11.1 so that it represents intermediate code for addition of two
matrices of 10× 10, with each element of 4-byte size.

18. Construct flow graph for above exercise.

19. Explain the value number method to determine common sub-expressions.


