
7CS5A COMPILER CONSTRUCTION (Syntax Directed Translation) Fall 2018

Lecture 2: Sept. 28, 2018

Instructor: K.R. Chowdhary : Professor of CS

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal

publications. They may be distributed outside this class only with the permission of the

Instructor.

2.1 Syntax Directed Translation

Syntax-directed translation is done by attaching rules or program fragments to productions
in a grammar. For example, consider an expression expr generated by the production,

expr → expr1 + term.

The subscript in expr1, is used only to distinguish the instance of expr in the production
body from the head of the production. We can translate expr by exploiting its structure,
as in the following pseudo-code:

translate expr1;

translate term;

handle the +; (2.1)

In addition to program fragments, we associate information with a language construct by at-
taching attributes to the grammar symbol(s) representing the construct. A syntax-directed
definition (SDD) specifies the values of attributes by embedding semantic rules in the gram-
mar productions. For example, an infix-to-postfix translator might have a production and
rule:

Production : E → E1 + T

Corresponding Semantic Rule :

E.code = E1.code ‖ T.code ‖ ′+′

This production has two nonterminals, E and T ; the subscript in E1 distinguishes the
occurrence of E in the production body from the occurrence of E as the head. Both E
and T have a string-valued attribute code1. The semantic rule specifies that the string

1The word code here is for identification, and not for program code. This attribute code supports

concatenation.

2-1



2-2 Lecture 2: Sept. 28, 2018

E.code is formed by concatenating (‖ is symbol for concatenation) E1.code, T.code, and the
character ′+′. While the rule makes it explicit that the translation of E is built up from the
translations of E1, T , and

′+′, it may be inefficient to implement the translation directly by
manipulating strings, for example, we may need to do type change to perform arithmetic.

A syntax-directed translation (SDT) scheme embeds program fragments called semantic

actions within production bodies, as follows:

E → E1 + T {print′+′} (2.2)

By convention, semantic actions are enclosed within curly braces. (If curly braces occur as
grammar symbols, we enclose them within single quotes, as in ’{’ and ’}’.) The position of a
semantic action in a production body determines the order in which the action is executed
(e.g., in preorder, post order, and inorder). In production (2.2), the action occurs at the end,
after all the grammar symbols. In general, a semantic actions may occur at any position in
a production body.

Between the two notations, syntax-directed definitions can be more readable, and hence
more useful for specifications. However, translation schemes can be more efficient, and
hence more useful for implementations.

The most general approach to syntax-directed translation is to construct a parse tree or a
syntax tree, and then to compute the values of attributes at the nodes of the tree by visiting
the nodes of the tree. In other cases, translation can be done during parsing, without
building an explicit tree. We shall therefore study a class of syntax-directed translations
called “L-attributed translations” (L for left-to-right), which covers virtually all translations
that can be performed during parsing. We also study a smaller class, called “S-attributed
translations” (S for synthesized), which can be performed easily in connection with a bottom-
up parse.

There are two important concepts related to syntax directed translation: 1. Attribute, and
2. syntax-directed translation schema.

Attributes. An attribute is any quantity associated with a programming construct, for
example, data types in the expressions, the number of instructions in the generated code,
or the location of the first instruction in the generated code, etc. In the programming con-
structs, we use use grammar symbols (nonterminals and terminals), we extend the notion
of attributes from constructs to the symbols to represent them.

Syntax-directed translation schema. A translation scheme is a notation for attaching
program fragments to the productions of a grammar. These program fragments are executed
when the production rule is applied during syntax analysis. The combined result of all these
fragment executions, in the order of the syntax analysis, produces the translation of the
program to which this analysis/synthesis process is applied.

We will use Syntax-directed translations to translate infix expressions into postfix notation,
to evaluate expressions, and to build syntax trees for programming constructs.



Lecture 2: Sept. 28, 2018 2-3

2.1.1 Postfix Notation

We will discuss translation of expressions into postfix notation. A postfix notation for an
expression E can be defined inductively as follows:

1. If E is a variable or constant, then the postfix notation for E is E itself.

2. If E is an expression of the form E1 op E2, where op is an arbitrary operator, then
postfix notation for E is “E′

1
E′

2
op”, where E′

1
and E′

2
are the postfix notations for

E1 and E2, respectively. The E1 and E′

2
, will not be same unless they are constants

or variables. Similar is case with E2 vs E′

2
.

3. If E is a parenthesized expression of the form (E1), then the postfix notation for E is
the same as the postfix notation for E1.

Example 2.1 Translating to posfix notation.

The postfix notation for (7 − 3) + 5 is 7 3 − 5+. The translation of 7, 3, 5 are constants,
by rule (1). Then the translation of 7 − 3 is 7 3− by rule (2). The translation of (7 − 3) is
same by rule (3) above.

Having translated the parenthesized subexpression, we apply the rule (2), to the entire
expression, with (7 − 3) in the role of E1 and 5 in the role of E2, to get result 7 3− 5+.

As another example, the postfix notation for 7 − (3 + 2) is 7 3 2 +−. That is 3 + 2 is first
translated into 3 2+, which become the second argument of minus sign. �

No parentheses are needed in postfix notation, because the position and arity (number of
arguments) of the operators permits only one possible decoding of a postfix expression. The
“trick” to compute postfix expression is to repeatedly scan the postfix string from the left
most, until you find an operator. Then, look to the left for the proper number of operands,
and group this operator with its operands. Then evaluate the operator on the operands, and
replace them by the result. Then repeat the process, continuing to the right and searching
for another operator.

Consider the postfix expression 952 +−3∗, we find that it evaluates as follows:

9 5 2 + − 3 ∗ ⇒ 9 7 − 3 ∗

⇒ 2 3 ∗

⇒ 6.

2.1.2 Synthesized Attributes and annotated Parse Tree

It is idea of associating quantities with programming constructs–for example, values and
types with expressions–can be expressed in terms of grammars. We associate attributes
with nonterminals and terminals. Then, we attach rules to the productions of the grammar;
these rules describe how the attributes are computed at those nodes of the parse-tree where
the production in question is used to relate a node to its children. For example, x → 5−7, will
represent a subtree with x as root and 5,′ −′, 7 as children. We should associate attributes
with these so that these attributes help for correctly computing values at root node x.



2-4 Lecture 2: Sept. 28, 2018

A syntax-directed definition (SDD) associates:

1. With each grammar symbol, a set of attributes, and

2. With each production, a set of semantic rules for computing the values of the attributes
associated with the symbols appearing in the production.

Attributes can be evaluated as follows: For a given input string x, construct a parse tree
for x. Then, apply the semantic rules to evaluate attributes at each node in the parse tree.
Suppose a node N in a parse tree is labeled by the grammar symbol X . We write X.a to
denote the value of attribute a of X at that node.

Definition 2.2 Synthesized Attribute. An attribute is said to be synthesized if its value

at a parse-tree node N is determined from attribute values at the children of N and at N
itself. �

Synthesized attributes have the desirable property that they can be evaluated during a single
bottom-up traversal of a parse tree.

Example 2.3 Syntax-directed definition for infix to postfix translation.

The annotated parse tree in Fig. 2.1 is based on the syntax-directed definition in Table 2.1
for translating expressions consisting of digits separated by plus or minus signs into postfix
notation. The attribute t indicates the attribute as postfix of term and expr. Each nonter-
minal has a string-valued attribute t that represents the postfix notation for the expression
generated by that nonterminal in a parse tree. The symbol ‖ in the semantic rule is the
operator for string concatenation.

Table 2.1: Syntax-directed definition for infix to postfix translation.
Production Semantic Rules
expr → expr1 + term expr.t = expr1.t ‖ term.t ‖ ′+′

expr → expr1 − term expr.t = expr1.t ‖ term.t ‖ ′−′

expr → term expr.t = term.t
term → 0 term.t =′ 0′

term → 1 term.t =′ 1′

... ...
term → 9 term.t =′ 9′

The postfix form of a digit is the digit itself; e.g., the semantic rule associated with the
production term → 7 defines term.t to be 7 itself whenever this production is used at a
node in a parse tree, and similar action is taken for other digits. As another example, when
the production expr → term is applied, the value of term.t becomes the value of expr.t
(term.t’s value moves up into value of expr.t), in the left most leg of the tree in figure 2.1.

The production expr → expr1+ term derives an expression containing a plus operator. The
left operand of the plus operator is given by expr1, and the right operand by term. The
semantic rule

exper.t = expr1.t ‖ term.t ‖ ′+′



Lecture 2: Sept. 28, 2018 2-5

expr.t = 73− 5+

expr.t = 73− + term.t = 5

expr.t = 7 − term.t = 3 5

term.t = 7 3

7

Figure 2.1: Annotated Parse Tree for 7− 3 + 5.

associated with this production constructs the value of attribute expr.t by concatenating
the postfix forms expr1.t and term.t of the left and right operands, respectively, and then
appending the plus sign. This rule is a formalization of the definition of “postfix expression.”
�

Definition 2.4 Annotated parse tree. A parse tree showing the attribute values at each

node is called an annotated parse tree. �

For example, Fig. 2.1 shows an annotated parse tree for expression 7−3+5 with an attribute
t associated with the nonterminals expr and term. The value 73 − 5+ of the attribute at
the root node, which is the postfix notation for 7 − 3 + 5. We shall see shortly how these
expressions are computed.

Definition 2.5 Simple syntax-directed Translation. The syntax-directed definition in

Example 2.3 has the following important property: the string representing the translation of

the nonterminal at the head of each production is the concatenation of the translations of

the nonterminals in the production body, in the same order as in the production, with some

optional additional strings interleaved. �

Simple syntax-directed definition can be implemented by printing only the additional strings,
in the order they appear in the definition.

2.2 Exercises

1. Convert the expression (3+5)/4∗2 into postfix notation. Write all the necessary steps
for this.

2. Give an inductive definition of obtaining postfix expression. Why the definition given
in this chapter is not called as recursive definition.

3. Write an algorithm in your own language to convert any general expression into postfix
notation.



2-6 Lecture 2: Sept. 28, 2018

4. Write an algorithm in your own language to evaluate any given expression of postfix
expression.

5. Demonstrate computing a postfix expression obtained from (3 + 5)/4 ∗ 2.

6. Construct an annotated parse tree for 3 ∗ 5 + 7.

7. (a) When an attributed is called synthesized attribute?

(b) What is special property of a synthesized attribute?

(c) What can be the semantic actions, other than print? Give examples.

(d) Why parentheses are not required in the postfix expression? Justify.

8. Define followings:

(a) Syntax Directed Definition

(b) Simple Syntax Directed translation

(c) Annotated Parse Tree

9. Construct annotated parse trees for each of the following.

(a) 3 ∗ 2− 8 + 5

(b) 5/2 + 7− 6

(c) 8 ∗ 3 + 6/2


