7CS5A COMPILER CONSTRUCTION (Syntax Directed Translation) Fall 2018

Lecture 3: Sept. 29, 2018
Instructor: K.R. Chowdhary : Professor of CS

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal
publications. They may be distributed outside this class only with the permission of the
Instructor.

3.1 Tree Traversals

Tree traversals will be used for describing attribute evaluation and for specifying the execu-
tion of code fragments in a translation scheme. A traversal of a tree starts at the root and
visits each node of the tree in some order.

A depth-first traversal starts at the root and recursively visits the children of each node in
any order, not necessarily from left to right. It is called “depth- first” because it visits an
“unvisited” child of a node whenever it can, so it visits nodes as far away from the root (as
“deep”) as quickly as it can.

The procedure visit(N) in Algorithm 1 is a depth first traversal that visits the children of
a node in left-to-right order. In this traversal, we have included the action of evaluating
translations at each node, just before we finish with that node (i.e., after translations at the
children have surely been computed). In general, the actions associated with a traversal can
be whatever we choose, or nothing at all.

Algorithm 1 visit(V)

: Procedure visit(node N){

: for (each child C of N, from left to right) do
visit(C);

end for

evaluate semantic rules at node N;

}

A AN S

A syntax-directed definition does not impose any specific order for the evaluation of at-
tributes on a parse tree; any evaluation order that computes an attribute a after all the
other attributes that a depends on is acceptable. Synthesized attributes can be evaluated
during any bottom-up traversal, that is, a traversal that evaluates attributes at a node after
having evaluated attributes at its children. In general, after considering the both synthesized
and inherited attributes, the matter of evaluation order is quite complex.

3-1

3-2 Lecture 3: Sept. 29, 2018

3.2 Translation Schemes

The syntax-directed definition we discussed earlier (for infix to postfix translation) builds
up a translation by attaching strings as attributes to the nodes in the parse tree. We now
consider an alternative approach that does not need to manipulate strings; it produces the
same translation increment ally, by executing program fragments.

A syntax-directed translation scheme is a notation for specifying a translation by attaching
program fragments to productions in a grammar. A translation scheme is like a syntax-
directed definition, except that the order of evaluation of the semantic rules is explicitly
specified.

Program fragments embedded within production bodies are called semantic actions. The
position at which an action is to be executed is shown by enclosing it between curly braces
and writing it within the production body, as in

rest — + term {print('+')} rest; (3.1)

We shall see such rules when we consider an alternative form of grammar for expressions,
where the non-terminal rest (equation 3.1) represents “everything but the first term of an
expression.” Again, the subscript in rest; distinguishes this instance of non-terminal rest
in the production body from the instance of rest at the head of the production.

When drawing a parse tree for a translation scheme, we indicate an action by constructing
an extra child for it, connected by a dashed line to the node that corresponds to the head
of the production. For example, the portion of the parse tree for the above production and
action is shown in Fig. 3.1. The node for a semantic action has no children, so the action is
performed when this node is first seen.

+ term {print('+')} resty

Figure 3.1: An extra leaf ({print('+’)}) is constructed for a semantic action.

Definition 3.1 Preorder. The Preorder list of a (sub)tree rooted at node N consists of:
N, followed by the preorders of the subtrees of each of its children, if any, from the left.

Definition 3.2 Postorder. The postorder of a (sub)tree rooted at N consists of the pos-
torders of each of the subtrees for the children of N, if any, from the left, then followed by
N itself.

Example 3.3 Actions translating 7— 3+ 5 into 73 —5 +.

Solution. The parse tree in Fig. 3.2 has print statements at extra leaves, which are attached
by dashed lines to interior nodes of the parse tree. The translation scheme appears in

Lecture 3: Sept. 29, 2018 3-3

Table 3.1. The underlying grammar generates expressions consisting of digits separated
by plus and minus signs. The actions embedded in the production bodies translate such
expressions into postfix notation, provided we perform a left-to-right depth-first traversal of
the tree and execute each print statement when we visit its leaf.

Table 3.1: Actions for translating into postfix notation

expr — expry +term {print('+')}
expr — expry —term {print('—')}
expr — term
term — 0 {print('0’)}
term — 1 {print('l")}
term — 9 {print('9)}
expr
exrpr + terg prz?zt(’+’)}
//\\\\ / AN
expr - term {print('=")} 5 {print('5")}
\\
| N
3 {print('3")}
term
\
\
/ \
7 {print('7)}

Figure 3.2: Actions translating 7—3+5 into 73 — 5 +.

The root of Fig. 3.2 represents the first production in Tables. 3.1. In a postorder traversal,
we first perform all the actions in the leftmost subtree of the root, for the left operand, also
labeled expr like the root. We then visit the leaf '+’ at which there is no action. We next
perform the actions in the subtree for the right operand term and, finally, the semantic
action {print(’+’)} at the extra node.

Since the productions for term have only a digit on the right side, that digit is printed by
the actions for the productions. No output is necessary for the production expr — term,
and only the operator needs to be printed in the action for each of the first two productions.
When executed during a postorder traversal of the parse tree, the actions in Fig. 3.2 print
73-5+. O

3.2.1 Exercises

1. Construct a syntax-directed translation scheme that translates arithmetic expres-
sions from infix notation into prefix notation in which an operator appears before
its operands; e.g., —xy is the prefix notation for x — y. Give annotated parse trees for
the inputs 7— 3+ 5 and 7 — 3 % 5.

Ans. Given Productions:

3-4 Lecture 3: Sept. 29, 2018

expr — expr + term
| expr — term

| term

Translations schemes from infix notation into prefix are:

expr — {print(“+")} expr + term
| {print(“=")} expr — term

| term

Ans. Given Productions:

expr — expr * term
| expr/term

| term

Translations schemes from infix notation into prefix are:

expr — {print(“«")} expr * term
| {print(“/")} expr/term
| factor
factor — digit {print(digit)}
| (expr)
The complete answer is Ans; plus Anss.

2. Construct a syntax-directed translation scheme that translates arithmetic expressions
from postfix notation into infix notation. Give annotated parse trees for the inputs
73—5 % and 735 *—.

3. Construct a syntax-directed translation scheme that translates integers into roman
numerals.

4. Construct a syntax-directed translation scheme that translates roman numerals into
integers.

5. Construct a syntax-directed translation scheme that translates postfix arithmetic ex-
pressions into equivalent prefix arithmetic expressions.

Ans. Given production is:

expr — expr expr op | digit

Translation scheme:

expr — {print(op)} expr expr op | digit {print(digit)}

Lecture 3: Sept. 29, 2018 3-5

6. Explain the difference between synthesized and inherited attributed attributes. Give
examples for each.

7. Define following:

(a) Syntax Directed Definition (SDD)
(b) Syntax Directed Translation (SDT)

(c) Semantic Actions

8. Define preorder and postorder traversals of trees. Give one example of each. FInd out
the time and space complexities of standard free and post order travels.

