
7CS5A COMPILER CONSTRUCTION (Synthesized and inherited attributes)

Lecture 4: Oct. 04, 2018

Instructor: K.R. Chowdhary : Professor of CS

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal

publications. They may be distributed outside this class only with the permission of the

Instructor.

4.1 Inherited and Synthesized Attributes

A syntax-directed definition (SDD) is a context-free grammar together with, attributes and
rules. Attributes are associated with grammar symbols and rules are associated with pro-
ductions. If X is a symbol and a is one of its attributes, then we write X.a to denote the
value of a at a particular parse-tree node labeled X . If we implement the nodes of the parse
tree by records or objects, then the attributes of X can be implemented by data fields in
the records that represent the nodes for X . Attributes may be of any kind: numbers, types,
table references, or strings, for example, The strings may even be long sequences of code,
say code in the intermediate language used by a compiler.

We shall deal with two kinds of attributes for nonterminals:

1. A synthesized attribute for a nonterminal A at a parse-tree node N is defined by a
semantic rule associated with the production at N . Note that the production must
have A as its head. A synthesized attribute at node N is defined only in terms of
attribute values at the children of N and at N itself.

2. An inherited attribute for a nonterminal B at a parse-tree node N is defined by a
semantic rule associated with the production at the parent of N . Note that the
production must have B as a symbol in its body. An inherited attribute at node N is
defined only in terms of attribute values at N ’s parent, N itself, and N ’s siblings.

Accordingly, we do not allow an inherited attribute at node N to be defined in terms of
attribute values at the children of node N . But, we do allow a synthesized attribute at node
N to be defined in terms of inherited attribute values at node N itself.

Terminals can have synthesized attributes, but not inherited attributes. Attributes for
terminals have lexical values that are supplied by the lexical analyzer; there are no semantic
rules in the SDD itself for computing the value of an attribute for a terminal, however, it
exists in the non-terminals, as semantics of a non-terminal is computed using the semantics
of its children.

Example 4.1 Syntax-directed definition of a simple desk calculator.

Solution. The SDD in Table 4.1 is based on the familiar grammar for arithmetic expressions
with operators + and ∗. It evaluates expressions terminated by an endmarker “n”. In the

4-1



4-2 Lecture 4: Oct. 04, 2018

SDD, each of the nonterminals has a single synthesized attribute, called val. We also suppose
that the terminal digit has a synthesized attribute lexval, which is an integer value returned
by the lexical analyzer.

Table 4.1: Syntax-directed definition (SDD) of a simple desk calculator (S-attributed).

Production Semantic Rules

1. L → E n L.val = E.val

2. E → E1 + T E.val = E1.val + T.val

3. E → T E.val = T.val

4. T → T1 ∗ F T.val = T1.val × F.val

5. T → F T.val = F.val

6. F → (E) F.val = E.val

7. F → digit F.val = digit.lexval

The production rule 1, → E n, sets L.val to E.va1, which we shall see is the numerical value
of the entire expression (the various symbols stand for: L: left associative, E: expression,
T : term, E1: instance of an expression, and T1: instance of a term).

Production rule 2, E → E1 +T , also has one rule, which computes the val attribute for the
head E as the sum of the values at E1 and T . At any parse-tree node N labeled E, the
value of val for E is the sum of the values of val at the children of node N labeled E and
T .

Production rule 3, E → T , has a single rule that defines the value of val for E to be
the same as the value of val at the child for T . Production rule 4 is similar to the second
production; its rule multiplies the values at the children instead of adding them. The rules
for productions 5 and 6 copy values at a child, like that for the third production. Production
7 gives F.val the value of a digit, that is, the numerical value of the token digit that the
lexical analyzer returned. �

An SDD that involves only synthesized attributes is called S-attributed ; the SDD in Table 4.1
has S-attributed property. In an S-attributed SDD, each rule computes an attribute for
the nonterminal at the head of a production from attributes taken from the body of the
production.

Example 4.2 Construction of Annotated parse tree for 3 ∗ 5 + 4 n.

Solution. Figure 4.1 shows an annotated parse tree for the input string 3 ∗ 5 + 4 n,
constructed using the grammar and rules of Table 4.1. The values of lexval are presumed
supplied by the lexical analyzer.

Each of the nodes for the nonterminals has attribute val computed in a bottom-up order,
and we see the resulting values associated with each node. For instance, at the node with a
child labeled ∗, after computing T.val = 3 and F.val = 5 at its first and third children, we
apply the rule that says T.val is the product of these two values, or 15. �

Inherited attributes are useful when the structure of a parse tree does not “match” the
abstract syntax of the source code. The next example shows how inherited attributes can
be used to overcome such a mismatch due to a grammar designed for parsing rather than
translation.



Lecture 4: Oct. 04, 2018 4-3

L.val = 19

nE.val = 19

E.val = 15 +
T.val = 4

F.val = 4

digit.lexval = 4

T.val = 15

T.val = 3 ∗

F.val = 3

digit.lexval = 3

F.val = 5

digit.lexval = 5

Figure 4.1: Annotated parse tree for 3 ∗ 5 + 4 n.

4.2 Evaluating attributes through SDD

To visualize the translation specified by an SDD, it is helpful if we work with parse trees.
However, even though a translator need not actually build a parse tree. Imagine therefore
that the rules of an SDD are applied by first constructing a parse tree and then using the
rules to evaluate all of the attributes at each of the nodes of the parse tree. A parse tree,
showing the value(s) of its attribute(s), we called as an annotated parse tree.

How do we construct an annotated parse tree? In what order do we evaluate attributes?
Before we can evaluate an attribute at a node of a parse tree, we must evaluate all the
attributes upon which its value depends. For example, if all attributes are synthesized, as
in Example 4.1, then we must evaluate the val attributes at all of the children of a node
before we can evaluate the val attribute at the node itself.

With synthesized attributes, we can evaluate attributes in any bottom-up order, such as
that of a postorder traversal of the parse tree; the evaluation of S-attributed definitions is
discussed later sections.

For SDD’s with both inherited and synthesized attributes, there is no guarantee that there is
even one order in which to evaluate attributes at nodes. For instance, consider nonterminals
A and B, with synthesized and inherited attributes A.s and B.i, respectively, along with
the production and rules as follows:

Production :

A → B



4-4 Lecture 4: Oct. 04, 2018

Semantic Rules :

A.s = B.i

B.i = A.s+ 1

We note that these rules are circular, hence, it is impossible to evaluate either A.s at a node
N or B.i at the child of N without first evaluating the other. The circular dependency of
A.s and B.i at some pair of nodes in a parse tree is shown in Figure 4.2.

A

B

A.s

B.i

Figure 4.2: The circular dependency of A.s and B.i on one another.

It is computationally difficult to determine whether or not there exist any circularities in
any of the parse trees that a given SDD could have to translate. Fortunately, there are
useful subclasses of SDD’s that are sufficient to guarantee that an order of evaluation exists.

Example 4.3 An SDD based on a grammar suitable for top-down parsing.

Solution. The SDD in Table 4.2 computes terms like 4∗6 and 4∗6∗7. The top-down parse
of input 4 ∗ 6 begins with the production T → FT ′. Here, F generates the digit 4, but the
operator ∗ is generated by T ′. Thus, the left operand 4 appears in a different subtree of the
parse tree from ∗. An inherited (.inh) attribute will therefore be used to pass the operand
to the operator.

Table 4.2: An SDD based on a grammar suitable for top-down parsing.

Rule Production Semantic Rules

1. T → FT ′ T ′.inh = F.val

T.val = T ′.syn

2. T ′
→ ∗FT ′

1
T ′

1
.inh = T ′

1
.inh× F.val

T ′.syn = T ′

1
.syn

3. T ′
→ ε T ′.syn = T ′.inh

4. F → digit F.val = digit.lexval

The grammar in this example is an excerpt from a non-left-recursive version of the familiar
expression grammar; we used such a grammar as a running example to illustrate top-down
parsing earlier.



Lecture 4: Oct. 04, 2018 4-5

Each of the nonterminals T and F has a synthesized attribute val; the terminal digit has a
synthesized attribute lexval. The nonterminal T ′ has two attributes: an inherited attribute
inh and a synthesized attribute syn.

The semantic rules are based on the idea that the left operand of the operator ∗ is inherited.
More precisely, the head T ′ of production T ′

→ ∗ F T ′

1
inherits the left operand of ∗ in the

production body. Given a term x ∗ y ∗ z, the root of the subtree for ∗y ∗ z inherits x. Then,
the root of the subtree for ∗z inherits the value of x ∗ y, and so on, if there are more factors
in the term. Once all the factors have been accumulated, the result is passed back up the
tree using synthesized attributes.

To see how the semantic rules are used, consider the annotated parse tree for 4∗6 in Fig. 4.3.
The leftmost leaf in the parse tree, labeled digit, has attribute value lexval = 4, where the
4 is supplied by the lexical analyzer. Its parent is for production 4, F → digit. The only
semantic rule associated with this production defines F.val = digit.lexval, which equals 4.

T.val = 24

F.val = 4 T ′.inh = 4

T ′.syn = 24

digit.lexval = 4 ∗
F.val = 6

digit.lexval = 6

T ′

1
.inh = 24

T ′

1
.syn = 24

ε

Figure 4.3: Annotated parse tree for 4 ∗ 6.

At the second child of the root, the inherited attribute T ′.inh is defined by the semantic rule
T ′.inh = F.val associated with production 1. Thus, the left operand, 4, for the ∗ operator
is passed from left to right across the children of the root.

The production at the node for T ′ is T ′
→ ∗ F T ′

1
. (We retain the subscript 1 in the

annotated parse tree to distinguish between the two nodes for T ′.) The inherited attribute
T ′

1
.inh is defined by the semantic rule T ′

1
.inh = T ′.inh× F.val associated with production

2.

With T ′.inh = 4 and F.val = 6, we get T ′

1
.inh = 24. At the lower node for T ′

1
, the

production is T ′
→ ε. The semantic rule T ′.syn = T ′.inh defines T ′

1
.syn = 24. The syn

attributes at the nodes for T ′ pass the value 24 as synthesized attributes up the tree to the
node for T , where T.val = 24. �

4.3 Exercises

1. Using the SDD of Table 4.1, construct the annotated parse trees for the following
expressions:

(a) 2 + 3 + 4

(b) 2 + 3 ∗ 4



4-6 Lecture 4: Oct. 04, 2018

(c) (2 + 3) ∗ (5 + 6)n.

(d) 1 ∗ 2 ∗ (3 + 4)n.

2. Extend the SDD of Table 4.2 to handle expressions as in Table 4.1.

3. Which source of attributes are common in synthesized and inherited attributes?

4. Shot answer questions.

(a) Can an inherited attribute be computed in terms of attributes of its children?

(b) Can a synthesized attribute be computed in terms of attributes of its children?

(c) How an inherited attribute is computed (its process)? What are its dependencies?

(d) Why an inherited attribute is complex to compute?

(e) Can a terminal node have inherited attributes?

(f) Can a terminal node have synthesized attributes?

5. Explain, why the expression a ∗ b ∗ c cannot be computed using synthesized attributes
only, i.e., using T.val = T1.val × F.val, T.val = F.val, F.val = digit.lexval ?

Ans. Otherwise it would be left-recursive.

6. What are the circular rules of attributes? Give examples. Also, explain the challenges
of circular dependencies.


