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5.1 Evaluation Orders for SDD’s

“Dependency graphs” are a useful tool for determining an evaluation order for the attribute
instances in a given parse tree. While an annotated parse tree shows the values of at-
tributes, a dependency graph helps us determine how those values can be computed. In
the following, in addition to dependency graph, we define two important classes of SDD’s:
the “S-attributed” and the more general “L-attributed” SDDs. The translations specified
by these two classes fit well with the parsing methods we have studied, and most transla-
tions encountered in practice can be written as per the requirements of at least one of these
classes.

5.1.1 Dependency Graphs

A dependency graph indicate the flow of information among the instances of attributes in a
given parse tree. An edge from one attribute instance to another means that the value of the
first is needed to compute the second. Edges express constraints implied by the semantic
rules. Following is more detailed introduction:

• For each parse-tree node, say a node labeled by grammar symbol X , the dependency
graph has a node for each attribute associated with X .
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B.i

A → XY Y → BC

M

N

Figure 5.1: Sample Dependency graphs.

• Suppose that a semantic rule associated with a production p defines the value of
synthesized attribute A.b in terms of the value of X.c (the rule may define A.b in
terms of other attributes in addition to X.c) . Then, the dependency graph has an
edge from X.c to A.b. More precisely, at every node N labeled as A where production
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p is applied, create an edge to attribute b at N , from the attribute c at the child of N
corresponding to this instance of the symbol X in the body of the production1.

• Suppose that a semantic rule associated with a production p defines the value of
inherited attribute B.i in terms of the value of X.a. Then, the dependency graph
has an edge from X.a to B.i. For each node N labeled B that corresponds to an
occurrence of this B in the body of production p, create an edge to attribute i at N
from the attribute a at the node M that corresponds to this occurrence of X . Note
that M could be either the parent or a sibling of N .

Example 5.1 Synthesize E.val from E1.val and E2.val.

Solution. Consider the following production and rule:

Production Rule :

E → E1 + T

Semantic Rule :

E.val = E1.val + T.val

At every node N labeled E, with children corresponding to the body of this production,
the synthesized attribute val at N is computed using the values of val at the two children,
labeled E and T . Thus, a portion of the dependency graph for every parse tree in which
this production is used looks like in Fig. 5.2. As a convention, we shall show the parse tree
edges as dotted lines, while the edges of the dependency graph are solid.

E

E1 val + T val

val

Node N

Figure 5.2: E.val is synthesized from E1.val and E2.val.

�

Example 5.2 Construct a Dependency graph for the annotated parse tree of Fig. 5.3, whose

SDD is given in Table 5.1.

Solution. The nodes of the dependency graph, represented by the numbers 1 through 9,
in Figure 5.4 correspond to the attributes in the annotated parse tree in Fig. 5.3.

1Since a node N can have several children labeled X, we again assume that subscripts distinguish among

uses of the same symbol at different places in the production.
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Table 5.1: An SDD based on a grammar suitable for top-down parsing.

S.No. Production Semantic Rules

1. T → FT ′ T ′.inh = F.val

T.val = T ′.syn

2. T ′ → ∗FT ′

1
T ′

1
.inh = T ′

1
.inh× F.val

T ′.syn = T ′

1
.syn

3. T ′ → ε T ′.syn = T ′.inh

4. F → digit F.val = digit.lexval

T.val = 24

F.val = 4 T ′.inh = 4

T ′.syn = 24

digit.lexval = 4 ∗
F.val = 6

digit.lexval = 6

T ′

1
.inh = 24

T ′

1
.syn = 24

ε

Figure 5.3: Annotated parse tree for 4 ∗ 6.

Nodes 1 and 2 represent the attribute lexval associated with the two leaves labeled digit.
Nodes 3 and 4 represent the attribute val (i.e., 4 and 6) associated with the two nodes
labeled F . The edges to node 3 from 1 and to node 4 from 2 result from the semantic rule
that defines F.val in terms of digit.lexua1. In fact, F.val equals digit.lexval, but the edge
represents dependence, not equality.

Nodes 5 and 6 represent the inherited attribute T ′.inh associated with each of the occur-
rences of nonterminal T ′ (T ′ → ∗FT ′

1
and T ′ → ε). The edge from 3 to 5 is due to the rule

T ′.inh = F.val, which defines T ′.inh at the right child of the root from F.va1 at the left
child. We see edges to node 6 from node 5 for T ′.inh and from node 4 for F.val, because
these values are multiplied to evaluate the attribute inh at node 6.

Nodes 7 and 8 represent the synthesized attribute syn associated with the occurrences of
T ′. The edge to node 7 from 6 is due to the semantic rule T ′.syn = T ′.inh associated with
production T ′ → ε. The edge to node 8 from 7 is due to a semantic rule associated with
production 2.

Finally, node 9 represents the attribute T.val. The edge from 8 to 9 is due to the semantic
rule, T.val = T ′.syn, associated with production 1 in Table 5.1. �

5.1.2 Ordering the evaluation of Attributes

The dependency graph specify the possible orders in which we can evaluate the attributes
at the various nodes of a parse tree. If the dependency graph has an edge from node M

to node N , then the attribute corresponding to M must be evaluated before the attribute
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Figure 5.4: Dependency graph for the annotated parse tree of Fig. 5.3.

of N . Thus, the only allowable orders of evaluation are those sequences of nodes N1, N2,
..., Nk such that if there is an edge of the dependency graph from Ni to Nj; where i < j.
Such an ordering transforms a directed graph into a linear order, called topological sort of
the graph.

If there is any cycle in the graph, then there are no topological sorts possible, that is, there
is no way to evaluate the SDD on this parse tree. If there are no cycles, however, then there
is always at least one topological sort. To see why, since there are no cycles, we can surely
find a node with no edge entering. For if there were no such node, we could proceed from
predecessor to predecessor until we came back to some node we had already seen, yielding
a cycle. Make this node the first in the topological order, remove it from the dependency
graph, and repeat the process on the remaining nodes.

Example 5.3 Topological Sort.

The dependency graph of Fig. 5.4 has no cycles. One topological sort is the order in which
the nodes have already been numbered: 1,2,. . . ,9. Notice that every edge of the graph
goes from a node to a higher-numbered node, so this order is surely a topological sort. There
are other topological sorts as well, such as 1,3,5,2,4,6,7,8,9. �

5.1.3 S-Attributed Definitions

As mentioned earlier, given an SDD, it is very hard to tell whether there exist any parse trees
whose dependency graphs have cycles. In practice, translations can be implemented using
classes of SDD’s that guarantee an evaluation order, since they do not permit dependency
graphs with cycles. Moreover, the two classes introduced in this section can be implemented
efficiently in connection with top-down or bottom-up parsing.

The first class is defined as follows:

Definition 5.4 An SDD is S-attributed if every attribute is synthesized.
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Example 5.5 The SDD of Table. 5.2 is an example of an S-attributed definition. Each

attribute, L.val, E.va1, T.val, and F.val is synthesized. �

Table 5.2: Syntax-directed definition of a simple desk calculator (S-attributed).

Production Semantic Rules

1. L → E n L.val = E.val

2. E → E1 + T E.val = E1.val + T.val

3. E → T E.val = T.val

4. T → T1 ∗ F T.val = T1.val × F.val

5. T → F T.val = F.val

6. F → (E) F.val = E.val

7. F → digit F.val = digit.lexval

When an SDD is S-attributed, we can evaluate its attributes in any bottom-up order of the
nodes of the parse tree. It is often especially simple to evaluate the attributes by performing
a postorder traversal of the parse tree and evaluating the attributes at a node N when the
traversal leaves N for the last time. That is, we apply the function postorder, defined below,
to the root of the parse tree:

Algorithm 1 Postorder(N)

1: Postorder(N){
2: for (each child C of N , from left to right) postorder(C); do
3: evaluate the attributes associated with node N ;
4: end for
5: }

S-attributed definitions can be implemented during bottom-up parsing, since a bottom-up
parse corresponds to a postorder traversal. Specifically, postorder corresponds exactly to
the order in which an LR parser reduces a production body to its head.

5.1.4 L-Attributed Definitions

The second class of SDD’s is called L-attributed definitions. For these definitions, edges of
dependency graph, corresponding to the attributes associated with production body, can
go from left to right but not from right to left in production symbols. More precisely, each
attribute must be either

1. Synthesized, or

2. Inherited, but with the rules limited as follows. Suppose that there is a production
A → X1X2...Xn, and that there is an inherited attribute Xi.a computed by a rule
associated with this production. Then the rule may use only:

(a) Inherited attributes associated with the head A.

(b) Either inherited or synthesized attributes associated with the occurrences of sym-
bols X1, X2, ... , Xi−1 occurring to the left of Xi.
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(c) Inherited or synthesized attributes associated with this occurrence of Xi itself,
but only in such a way that there are no cycles in a dependency graph formed
by the attributes of this Xi.

Theorem 5.6 Show that the SDD given in Table 5.1 is L-attributed.

Proof.

The SDD in Table 5.1 is L-attributed. To see why, consider the semantic rules for inherited
attributes: 1 and 2.

The first of these rules defines the inherited attribute T ′.inh using only F.val, and F appears
to the left of T ′ in the production body, as required. The second rule defines T ′

1
.inh using

the inherited attribute T ′.inh associated with the head, and F.va1, where F appears to the
left of T ′

1
in the production body.

In each of these cases, the rules use information “from above or from the left ,” as required
by the class. The remaining attributes are synthesized. Hence, the SDD is L-attributed. �

Example 5.7 Any SDD containing the following production and rules cannot be L-attributed:

Production :

A → BC.

Semantic Rules :

A.s = B.b;

B.i = f(C.c, A.s)

Solution. The first rule, A.s = B.b, is a legitimate rule in either an S-attributed or L-
attributed SDD. It defines a synthesized attribute A.s in terms of an attribute b at child B

(that is, a symbol within the production body).

The second rule defines an inherited attribute B.i, so the entire SDD cannot be S-attributed.
Further, although the rule is legal, the SDD cannot be L-attributed, because the attribute
C.c is used to help define B.i, and C is to the right of B in the production body. While
attributes at siblings in a parse tree may be used in L-attributed SDD’s, they must be to
the left of the symbol whose attribute is being defined. �

5.2 Exercises

1. How a graph can be used for computing attributes? Explain.

2. Construct parse-trees using S-attributed grammar for the following expressions:

(a) (3 + 4) ∗ (5 + 6)
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(b) 3 + 4 ∗ (5 + 6)

(c) 3 + 4 ∗ 5 + 6

3. What are all the topological sorts for the dependency graph of Fig. 5.4?

4. Explain the process for topological sorting of a graph. Take an example, and execute
it.

5. Why the graphs used in attribute grammars are called dependency graphs.

6. Prove that SDD in Table 5.1 is L-attributed grammar.

7. Show that, the SDD with following production and rule is not L-attributed.

A → BC

A.s = B.b

B.i = f(C.c, A.s)

8. What is the only fundamental difference between S.attributed and L-attributed defi-
nitions?

9. In Figure 5.4, explain how the attributes at all the nodes are computed?

10. Does the multiplication in Fig. 5.4 take place at node 5 or 6? Justify.

11. What is search in a topological order in a graph? Explain with example.

12. Describe the method to list the nodes in topological order in a dependency graph, if
it exists.

13. Write an algorithm to list the nodes in a dependency graph in topological order. If no
such order exists, print “No”.

14. List all the possible topological orders of nodes of dependency graph of Figure 5.4.
Also, justify these orders.

15. Describe the method you will use to find whether a topological of nodes exists in a
dependency graph.

16. What are the differences between S-attributed and L-attributed SDD?


