COMPILER CONSTRUCTION (INTRODUCTION) Fall 2019
Lecture 1-2: July 18-19, 2019
Instructor: K.R. Chowdhary : Professor of CS

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal
publications. They may be distributed outside this class only with the permission of the
Instructor.

1.1 Objectives and Outcomes

The objective the compiler course is to understand the basic principles of compiler design,
its various constituent parts, algorithms and data structures required to be used in the
compiler.

Yet, other objective is, to understand relations between computer architecture and how its
understanding is useful in design of a compiler.

The other objective is, how to construct efficient algorithms for compilers.

The outcome is to acquire basic skills for designing the compilers, as well as the knowledge
of compiler design.

After this course a student will know, in some depth, how a compiler works. In particu-
lar, he/she should understand the structure of a compiler, and how the source and target
languages influence various choices in its design.

It will give you a new appreciation for programming language features and the implementa-
tion challenges they pose, as well as for the actual hardware architecture and the run time
system in which your generated code executes.

Understanding the details of typical compilation models will also make you a more distinct
programmer.

You will also understand some specific components of compiler technology, such as lexical
analysis, grammars and parsing, type-checking, intermediate representations, static analysis,
common optimizations, instruction selection, register allocation, code generation, and run-
time organization.

The knowledge gained in the subject should be broad enough that if you are confronted with
the task of contributing to the implementation of a real compiler in the field, you should
be able to do so confidently and quickly. For many of you, this will be the first time you
have to write, maintain, and evolve a complex piece of software. You will have to program
for correctness, while keeping an eye on efficiency, both for the compiler itself and for the
code it generates. Because you will have to rewrite the compiler from lab to lab, and also
because you will be collaborating with a partner, you will have to pay close attention to
issues of modularity and interfaces.

1-1



1-2 Lecture 1-2: July 18-19, 2019

1.2 Introduction

The programming languages are notations for people as well as for computers, as how the
computations are performed. The advancement in information technology, we see today is
due to computers, and programs running in them. The programs are written in programming
languages. Before a program is run on any computer it is to be translated into machine
language, of that particular hardware on which it runs, unless it is written already in the
machine language. The software that do this translation is called compiler.

In the history of developments of compilers, what ever the standard techniques available
today were known in 1970s. Since then, the general improvements in the compilers have
been in the following areas:

e automation in significant part of the construction of compilers;
e improvement in the speed of the target code, due to optimizing algorithms;

e greater ability of compilers to be relatively easily re-targeted or written for new target
machines languages, partly due to automation, and partly due to better understanding
of the required compiler structure.

Improvements have come in special language features, like, exception handling, generics,
object oriented features such as dynamic binding, and parallelization. The other improve-
ment that has taken place is translation of functional languages, with new algorithms for
type checking, type classes, and interpretation by tree reduction.

An important aspect of techniques of translators is the strong interaction with the language
design. For example introduction of block-structured languages, like AIGOL and Pascal,
have pushed up the stack-based translation algorithms. Consequently, the stack-based al-
gorithms influenced the development of language semantics, such as the lexical scope rule,
and the principle of syntax directed translation. In such translation, the semantics of the
program, i.e., its execution behavior, is directed reflected in the syntax, or the structure,
so that translation is guided by this structure. This rule could have been formulated as
semantics-based-syntax.

The other aspect of the development has been the constant effort of computing community
to constantly rediscover creative translation techniques. The was primarily due to lack of
detailed documentation of specific translators in the computer science documentation. The
lack of documentation was due to commercial reasons or proprietary translators.

In this course, we will discuss about how to design and implement a compiler. These prin-
ciples of compiler design are applicable to many applications, which appeared particularly
after arrival of Internet. The principles of compiler design are important in natural language
processing, natural language translation, natural language understanding, Information Re-
trieval, etc.

The components of the hardware comprise CPU (central processing unit), memory, internal
architecture of the CPU, bus architecture, and the instruction set of the machine. The final
code generated by a compiler is in the the form of these machine instructions.

Thus, a compiler can be said to be a language processor, that reads as input a high level
language program, called source programs S, and translates it and provides at its output
the program in machine language, called object program T (see Fig. 1.1).



Lecture 1-2: July 18-19, 2019 1-3

Source a Object
program —* Compiler > program
S T

Figure 1.1: A compiler

Fig. 1.2 shows execution of the compiled (object code). The object code, when run on the
hardware, it receives its input as data, and produces its output as result.

Input Object Output
Data progtam Result

Figure 1.2: Executing an object program

Because a compiled program is to run on the hardware of the machine, therefore to under-
stand the compiler, and its design it is important to understand the architecture/hardware
of the computer also.

When the object program/machine language program is running on the hardware, each
instruction of the machine program is interpreted by the hardware, that means, the functions
specified in the instructions are carried out by the hardware. Therefore, the hardware is
interpreter of machine language.

It is possible to do the interpretation of high level language also, where each of the high
level instruction/statement is carried out directly, by a program (not the hardware), called
interpreter. The term interpreter is usually used for this interpreter. The Fig. 1.3 shows the
interpreter for a high level language.

Source

rogram —
Prog Interpreter I Output
Data - Result
Input

Figure 1.3: Interpreter for high level language

1.2.1 Compiler vs. Interpreter

From the above discussions, we understand that using a compiler we produce first, entire
object program, and then run it on the hardware. Therefore, unless the translation is fully
correct, it is not possible to produce the target/object program. However, the interpreter
is different. In one sense, because, it does not translate, and in other, because it executes
each of the high level language statement, one at a time, sequentially, until some error is
encountered or the program ends after execution.

A Java language program’s compilation is different from C. In the C, we first compile C
program into object code, and then run it on hardware. Whereas in Java, first a java program
is compiled into a code called byte code, which is different from machine code. Then as next
step, this byte code is interpreted by an interpreter, called, java virtual machine (JVM).
The java virtual machine is not hardware, but a program that runs on the hardware.



1-4 Lecture 1-2: July 18-19, 2019

A compiler is usually faster than Interpreter, so there is performance penalty while using
an interpreter. The advantage of interpreter is that compilation step is eliminated. For the
languages like, C, C++4, Fortran, there are compilers, but for the languages like, Prolog,
and more dynamic languages, like, LISP, and SMALLTALK there are interpreters.

1.3 Language Processing System

All the languages have some common properties, like, languages have alphabets, alphabets
make words, and words make sentences or statements. The only well defined alphabet
sequences are words, and well defined word sequences are sentences. The sentences have
definite structures, called syntax of the sentence, and meaning associated will each sub-unit
of sentence, called meaning or semantic of the sub-unit of sentence. These are true for all
the languages, whether it is a high level language, a human language (e.g., English), and
machine/assembly language.

Irrespective of what language it is, all the language processing systems have some common
features, as shown in the Fig. 1.4.

Modified
source Target program
program in assembly language Relocatable
/ machine code
S / y Target
ource Preprocessor Compiler Loader /linker f——
Program P Assembler machine code
Library files

Figure 1.4: A high level language processing system

1.4 Compiler Structure

So far we have discussed that compiler is a black box, with input (source program) and
output (machine or target code). Thus, we can say that compiler is a function ¢, that maps
input set of statements S with the output set of statements T' (T = f.(S)). However, this
mapping is not one-to-one, and of complex nature. Broadly speaking, there are two parts
of this mapping: analysis, and synthesis.

The first, i.e., analysis part breaks the program into constituent pieces and imposes a gram-
matical (syntax) structure on them. This structure is used for generating an intermediate
representation (IR) of the program. The analysis part checks that the program is as per
the correct syntax (grammar), or semantically sound. If not, then errors are flagged to
the user/programmer, so that the same can be corrected. One output of analysis part is
intermediate representation (intermediate code) (see Fig. 1.5).

In addition, analysis part also called front end of the compiler) collects the information
about the source program in a data structure called symbol table. This data structure is
passed to the synthesis part of compiler along with the intermediate representation.

The synthesis part builds the target program (often in assembly language), using the inter-
mediate representation and the symbol table. The synthesis part of the compiler is called



Lecture 1-2: July 18-19, 2019 1-5

Compiler
_________________________________________ .
Source | 1 Target
program : IR — IR : program
— ™ Front End Optimizer Back end |1

Figure 1.5: Major components of compiler

back end of the compiler.

1.5 Review Questions

AN S

© »®» N >

10.

What are the functions of a compiler?

Give names of any two compilers that run on Windows.
Give names of any two compilers that run on Linux.
How an interpreter is different from a compiler?

How a Java compiler and interpreter are different from conventional compilers and
interpreters?

Give merits of compiler compared to interpreter.

Give merits of an interpreter compared to a compiler.

Which phase handles the type checking in compiler?

Which phase of the compiler handles the operations on index of any array?

What is JVM?

1.6 Exercises

3.

4.

While there are number of phases in a compiler, why it is preferred to have 2-3 passes
only ?

There are number of other subjects in computer science curricula, how the compiler
course is related to following courses?

(a) data structure

(b) discrete structures

(d
(e) graph theory

)

(c) operating systems
) programming languages
)

(f) C language

What is relocatable code? Can you always load your executable code into any part of
the memory? Justify for Yes/No.

What are the functions of linker? What actually it does?



1-6 Lecture 1-2: July 18-19, 2019

References

[1] Compilers: Principles, Techniques, and Tools (2nd Edition) by Alfred V. Aho , Monica
S. Lam, et al., Sep 10, 2006

[2] Compiler design in C (Prentice-Hall software series) by Allen I Holub, Jan 1, 1990

[3] Engineering a Compiler, by Keith D. Cooper and Linda Torczon, Morgan Kaufmann
Publishers, 2004.



