
COMPILER CONSTRUCTION (Intermediate Code Generation) Fall 2019

Lecture 24: Type-Checking

Instructor: K.R. Chowdhary : Professor of CS

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal
publications. They may be distributed outside this class only with the permission of the
Instructor.

24.1 Types and Declarations

The applications of data types can be grouped under checking and translation:

• Type checking. It uses logical rules to reason about the behavior of a program at run
time. Specifically, it ensures that the types of the operands match the type expected
by an operator. For example, the && operator in Java expects its two operands to be
Boolean; the result is also of type Boolean.

• Translation Applications. From the type of a name, a compiler can determine the
storage that will be needed for that name at run time. Type information is also
needed to calculate the address denoted by an array reference, to insert explicit type
conversions, and to choose the right version of an arithmetic operator, among other
things.

In the following we will examine types and storage layout for names declared within a
procedure or a class; the actual storage for a procedure call or an object is allocated at run
time, when the procedure is called or the object is created. As we examine local declarations
at compile time, we can, however, use relative-addresses1.

24.1.1 Type Expressions

Types have structure, which we shall represent using type expressions : a type expression is
either a basic type or is formed by applying an operator called a type constructor to a type
expression. The sets of basic types and constructors depend on the language to be checked.

Example 24.1 Type Array.

An array type int[2] can be read as array(2, integer). Thus, the array type int[2][3]
(e.g., int a[2][3]) can be read as “array of 2 arrays of, 3 integers each” and written as a
type expression array(2, array(3, integer)). This type is represented by a tree shown in
Fig. 24.1. The operator array always takes two parameters, a number and a type.

1A relative address of a name or a component of a data structure is an offset from the start of a data

area.

24-1

24-2 Lecture 24: Type-Checking

array

2
array

3 integer

Figure 24.1: Type expression for int[2][3].

�

We shall use the following definition of type expressions:

• A basic type is a type expression. Typical basic types for a language include boolean,
char, integer, float, and void; the latter denotes “the absence of a value.”

• A type name is also a type expression.

• A type expression can be formed by applying the array type constructor to a number
and a type expression (see Fig. 24.1).

• A record is a data structure with named fields. A type expression can be formed by
applying the record type constructor to the field names and their types. Record types
can be implemented by applying the constructor record to a symbol table containing
entries for the fields.

• A type expression can be formed by using the type constructor “→” for function types.
We write s → t for “function from type s to type t.” Function types will be useful
when we discuss type checking later on.

• If s and t are type expressions, then their Cartesian product, s×t, is a type expression.
Products are introduced for completeness; they can be used to represent a list or tuple
of types (e.g., for function parameters). We assume that the operator “×” is left
associative it has higher precedence than “→”.

• Type expressions may contain variables whose values are type expressions.

As we noted above, the type declaration is done using simplified grammar that declares just
one name at a time. The declarations with list of names can be handles using, e.g., following
grammar.

D → T id;D | ε

T → B C | record ′{′ D ′}′

B → int | float

C → ε | [num] C (24.1)

The fragment of the above grammar deals with basic and array type. The nonterminal D
generates a sequence of declarations. The nonterminal T generates basic, array, or record
types. The nonterminal B generates one of the basic types int and float. The nontermal C

Lecture 24: Type-Checking 24-3

(for component) generates string of zero or integers, each integer surrounded by brackets.
An array type consists of a basic type specified by B, followed by array components specified
by nonterminal C. A record type (the second production of T) is a sequence of declarations
for the fields of the record, all surrounded by curly braces.

A convenient way to represent a type expression is to use a graph. The value-number
method can be adapted to construct a DAG for a type expression, with interior nodes for
type constructors and leaves for basic types, type names, and type variables.

24.1.2 Type equivalence

Many type-checking rules have the form, “if two type expressions are equal then return
certain error.” Potential ambiguities arise when names are given to two type expressions,
and the names are used in subsequent expressions. When type expressions are represented
by graphs, they are structurally equivalent if and only if one of the following conditions hold:

• They are the same basic type,

• They are formed by applying the same constructor to structurally equivalent types.

• One is a type name that denotes the other.

24.2 Storage layout for names

From the type of a name, we can determine the amount of storage that will be needed for
the name at run time. At compile time we can assign to each name a relative address. The
types and relative-addresses are saved in the symbol table entry for name. Data of various
length, such as strings, or data whose size cannot be determined until run time, such as
dynamic arrays, is handled by reserving a known fixed amount of storage for a pointer to
the data.

The translation scheme (SDT) given below in table 24.1 computes the type and their widths
for basic and array types. The SDT uses synthesized attribute type and width for each non-
terminal and two variables t and w, to pass type and width information from B node in a
parse-tree to the node for the production C → ε. In the SDD, t and w would be inherited
attribute for C.

Table 24.1: Computing types and their widths
T → B {t=B.type; w=B.width;}

C

B → int {B.type=integer; B.width=4;}
B → float {B.type=float; B.width=8;}
C → ε {C.type=t; C.width=w;}
C → [num] C1 {array(num.value, C1.type);

C.width=num.value ×C1.width;}

24-4 Lecture 24: Type-Checking

24.3 Type Checking

To do type checking a compiler needs to assign a type expression to each component of the
source program. The compiler must then determine that these type expressions conform to
a collection of logical rules, that is called the type system for the source language.

Type checking has the potential for catching errors in programs. In principle, any check can
be done dynamically, if the target code carries the type of an element along with the value of
the element. A sound type system eliminates the need for dynamic checking for type errors,
because it allows us to determine statically that these errors cannot occur when the target
program runs. An implementation of a language is strongly typed if a compiler guarantees
that the programs it accepts will run without type errors. Otherwise, the language is called
weakly-typed. C is weakly-typed, while Java is strongly-typed.

Besides their use for compiling, ideas from type checking have been used to improve the
security of systems that allow software modules to be imported and executed. Java programs
compile into machine-independent bytecodes that include detailed type information about
the operations in the bytecodes. Imported code is checked before it is allowed to execute,
to guard against both inadvertent errors and malicious misbehaviour.

Rules for type checking Type checking can take on two forms: synthesis and inference.
Type synthesis builds up the type of an expression from the types of its subexpressions. It
requires names to be declared before they are used. The type of E1+E2 is defined in terms
of the types of E1 and E2. A typical rule for type synthesis has the form,

if f has type s → t and x has type s,

then expression f(x) has type t (24.2)

Here, f and x denote expressions, and s → t denotes a function from type s to type t. This
rule for functions with one argument carries over to functions with several arguments. The
rule (24.2) can be adapted for E1 +E2 by viewing it as a function application add(E1, E2).
Other examples are mult, bigger, sqroot.

Type inference determines the type of a language construct from the way it is used. Let
null be a function that tests whether a list is empty. Then, from the usage null(x), we can
tell that x must be a list. The type of the elements of x is not known; all we know is that
x must be a list of elements of some type that is presently unknown. In other words, type
inference provides a type of an element due to the way it is used. For example, in C, when
char is used in add operation, it is treated as integer, like, in int a; x = x+′ a′;.

Variables representing type expressions allow us to talk about unknown types. We shall use
Greek letters α , β, ... for type variables in type expressions.

A typical rule for type inference has the form

if f(x) is an expression,

then for some α and β, f has type α → β and x has type α (24.3)

Lecture 24: Type-Checking 24-5

Type inference is needed for languages like ML, which check types, but do not require names
to be declared.

In this section, we consider type checking of expressions. The rules for checking statements
are similar to those for expressions. For example, we treat the conditional statement “if
(E) S;” as if it were the application of a function if to E and S. Let the special type void
denote the absence of a value. Then function if expects to be applied to a boolean and a
void ; the result of the application is a void.

24.4 Control Flow

The translation of statements such as if-else-statements and while-statements are tied to
the translation of Boolean expressions. In programming languages, Boolean expressions are
often used to,

1. Alter the flow of control. Boolean expressions are used as conditional expressions in
statements that alter the flow of control. The value of such boolean expressions is
implicit in a position reached in a program. For example, in if(E) S, the expression
E must be true if statement S is reached.

2. Compute logical values. A Boolean expression can represent true or false as it value.
Such Boolean expressions can be evaluated in analogy to arithmetic expressions using
three-address instructions with logical operators.

The intended use of Boolean expressions is determined by its syntactic context. For example,
an expression following the keyword if is used to alter the flow of control, while an expression
on the right side of an assignment is used to denote a logical value. Such syntactic contexts
can be specified in a number of ways: we may use two different nonterminals, use inherited
attributes, or set a flag during parsing. Alternatively we may build a syntax tree and invoke
different procedures for the two different uses of Boolean expressions.

24.4.1 Boolean Expressions

Boolean expressions are composed of the Boolean operators (which we denote &&, ||, and
!, in the C convention for the operators AND, OR, and NOT , respectively) applied to
elements that are Boolean variables or relational expressions. Relational expressions are
of the form E1 re1 E2, where E1 and E2 are arithmetic expressions. In this section, we
consider Boolean expressions (B) generated by the following grammar:

B → B||B | B&&B | ! B | (B) | E rel E | true | false

We use the attribute rel.op to indicate which of the six comparison operators <,<=, >,>=
,=, ! represented by rel. As is customary, we assume that || and && are left-associative,
and that || has lowest precedence, then &&, then !.

Given the expression B1 || B2, if we determine that B1 is true, then we can conclude that
the entire expression is true without having to evaluate B2. Similarly, given B1 && B2, if
B1 is false, then the entire expression is false.

24-6 Lecture 24: Type-Checking

The semantic definition of the programming language determines whether all parts of a
boolean expression must be evaluated. If the language definition permits (or requires)
portions of a boolean expression to go unevaluated, then the compiler can optimize the
evaluation of boolean expressions by computing only enough of an expression to determine
its value. Thus, in an expression such as B1 || B2, neither B1 nor B2 is necessarily evaluated
fully. If either B1 or B2 is an expression with side effects (e.g., it contains a function that
changes a global variable), then an unexpected answer may be obtained.

24.4.2 Short-Circuit Code

It is name given to a code with implicit or explicit jump statement. In short-circuit code,
the boolean operators &&, ||, and ! translate into jumps. The operators themselves do not
appear in the code; instead, the value of a boolean expression is represented by a position
in the code sequence.

Example 24.2 Convert if(x < 100 || x > 200&& x! = y) x = 0; into intermediate code.

The statement might be translated into the code below. In this translation, the Boolean ex-
pression is true if control reaches label L2. If the expression is false, control goes immediately
to label L1, skipping L2 and the assignment x = 0.

if x < 100 goto L2

if False x > 200 goto L1

if False x != y goto L1

L2: x = 0

L1: ..

�

24.5 Review Questions

1. Explain the meaning of declaration array(2, array(3, integer)).

2. What is strongly typed language? What are its advantages and disadvantages.

3. What are the advantages and disadvantages of weakly-typed languages.

4. Does a Java program perform more rigorous type checking than a C program? Explain
it, beyond the Yes/No.

24.6 Exercises

1. What are the two forms of type-checking? Explain the difference.

2. Give the type expression for int[5][6][7].

3. Classify the following languages as strongly-typed and weakly-typed: C, C++, Java,
Fortran, Prolog, LISP, Python.

Lecture 24: Type-Checking 24-7

4. A dynamic type-checking in a program is useful against malicious code. Justify this
statement.

5. Write a note on type-checking for Java.

6. How a run-time checking of a program leads to more secured program? Suggest your
own idea with logical justification.

References

[1] Compilers: Principles, Techniques, and Tools (2nd Edition) by Alfred V. Aho, Monica
S. Lam, et al., Sep 10, 2006.

[2] Compiler design in C (Prentice-Hall software series) by Allen I Holub, Jan 1, 1990.

[3] Engineering a Compiler, by Keith D. Cooper and Linda Torczon, Morgan Kaufmann
Publishers, 2004.

[4] Tools for Large-scale Parser Development, Proceedings of the COLING-2000 Workshop
on Efficiency In Large-Scale Parsing Systems, 2000, pp. 54-54, http://dl.acm.org/
citation.cfm?id=2387596.2387604.

