
, 6

COMPILER CONSTRUCTION (Lexical Analyser) Fall 2019

Lecture 5, 6: July 25-26, 2019

Instructor: K.R. Chowdhary : Professor of CS

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal

publications. They may be distributed outside this class only with the permission of the

Instructor.

5.1 Introduction

The first phase of compiler is lexical analyser, whose main task is to read the input characters
from the source program and assemble into lexemes, and produce output as sequence of
tokens. These tokens are input to parser for syntax analysis. The lexical analyser interacts
with the symbol table also. When it encounters a lexeme in the form of identifier, it is
entered into the symbol table. Some times it reads information from the symbol table to
determine the proper token.

A commonly used way for above is to implement the lexical analyser as a routine of the
parser. The lexical analyser is called by a call nextToken (see Fig 5.1), in return the lexical
analyser returns the next token to the parser. The parser checks the syntax by constructing
syntax tree for each statement of the language, and sends this to semantic analyser.

Token

nextToken

Source
Program

Lexical
Analyser Parser

Syntax tree

(to semantic
analyser)

Symbol

table

Figure 5.1: Lexical analyser as routine of parser

The lexical analyser not only generates the tokens but performs some other tasks also; these
are stripping of whitespace (blanks, new line, tab, some other characters which may be used
to separate the token in the input), and comments.

5.2 Lexical Analysis vs. Parsing

There are number of reasons why the analysis portion of a compiler is separated into lexical
analysis and syntax analysis (parsing) phases. One reason is due to simplicity of design.

5-1

5-2 Lecture 5, 6: July 25-26, 2019

The separation of these two allows us to simplify at least one of these tasks. For example,
the parser becomes simpler if whitespaces and comments are removed. If there is a new
language, this separation simplifies the design.

The efficiency is improved for the compiler – a separate lexical analyser allows use of spe-
cialised technique that serve only the lexical task. Apart from this, a separate buffering is
used for reading input into that before it goes to lexical analyser. This buffering speeds up
the process for lexical analyser.

The compiler portability is enhanced, as input-device specific properties can be confined to
the lexical analyser.

5.2.1 Token Attributes

In many cases, the lexical analyser returns to parser not only the token name, but attribute
value that describe the lexeme represented by the token. The token name influence parsing
decision, while attribute value influence translation of token after the parse.

We assume that every token has at most one attribute associated with it, however this
attribute may have further structure in it. E.g., the token id, using which we can associate
a great deal of information with token. This information may be, its lexeme, its type, and
location where it is found in the program. The latter is needed, to flag the error for that
location. All this information is kept in the symbol table. The appropriate value of the
identifier is a pointer to the symbol-table entry for that identifier. In some languages it is
challenging to recognize the lexemes, e.g., in Fortran, the statement “DO5I = 1,20”. In this
statement, until we come to comma sign, it is not clear whether DO5I is a variable or a DO
statement.

Examples of tokens are all the keywords in any program, all identifiers, operators, punctua-
tion marks, parentheses, curly braces, etc. While the non-tokens are comments, preprocessor
directives, macros, tabs, blanks, and newlines.

Example 5.1 Token names and associated attribute values for the statement e = m∗c∗∗2.

The token names and associated attribute names as follows:

〈id, 1〉

〈assignop〉

〈id, 2〉

〈multiop〉

〈id, 3〉

〈expop〉

〈number, integer value 2〉

In 〈id, 1〉, 1 is pointer to symbol-table entry for e, 2 for m, and 3 for c. Note that for certain
pairs, specially operators, punctuations, and keywords there is no attribute value required.
The “number” has been given integer values attribute. In practice, for constants numbers,
a digits sequence is stored and its attribute is a pointer to that string of digit sequence.

Lecture 5, 6: July 25-26, 2019 5-3

5.2.2 Lexical Errors

It is difficult for a lexical analyser to tell about any lexical errors, without the help of other
components. For example, if the lexical analyser first time encounters the word fi, in the
statement

fi(a == b)....

the lexical analyser cannot say, whether fi is the keyword, like, if or an undeclared function
identifier for function fi(a == b). Since fi is a valid lexeme for any token id, the lexical
analyser will return id to the parser. The reason for this is that lexical cannot say any
thing about the structure of statement. This error will be handled by the parser phase of
the compiler. Suppose the situation in the lexical analyser is such that none of the patterns
for the tokens matches prefix of the remaining input. The simplest solution in this case is
“panic mode” recovery. The successive characters from the remaining input (e.g., characters
after fi in this case) are deleted until the lexical analyser can find a well formed token at
the beginning of what input is left.

The other possible error recovery methods are: delete one character from the remaining
input1, insert a missing character into the remaining input, replace a character by other,
transpose two adjacent characters.

5.3 Input buffering

We normally consider that source file is stored on disk, therefore, we are able to read one
character at a time, and that too at slow speed. The input buffering stores the source file in
(RAM) buffer, hence makes it possible to foresee a lexeme beyond its boundary to determine
it correctly. This will help in the solution of problems discussed above (subsection 5.2.2). In
the C language, the single characters, like, −,+, >,<,= are operators themselves, as well as
they are beginnings of two characters, −−,++, >=, <=, <>,==. Hence, unless the second
character is read we are not in a position to determine, whether it is ’−’ or ’−−’ lexeme,
and similar in the others.

The size of buffer is usually equal to a block (1, or 2, or 4 k bytes). By storing the source
file fully or in part in the buffer makes it possible to read the input at speed, as well fore
see beyond any lexeme.

To scan the lexeme present in the buffer, two pointers are needed: one points to the begin of
a lexeme and other goes forward to detect the end of a lexeme, as shown in Fig. 5.2, where
begin and forward pointers’ position indicate that >= lexeme has been detected.

Once a lexeme is found the “forward pointer” is set to a character at its right end. Then,
after the lexeme is recorded, an attribute value is passed to the parser, and the lexeme’s
begin pointer is set to the character immediately following the end character of the current
lexeme. In the Fig. 5.2, we see that end of the lexeme “>=” is at position “forward pointer
value−1”. Once the lexeme is recorded, the forward pointers value is assigned to begin
pointer, and forward pointer is advanced to record the next lexeme. Once, the forward

1That is to delete a character for consideration of token, and not permanently deleting it from the input
text.

5-4 Lecture 5, 6: July 25-26, 2019

i f (a > b)=

lexeme

begin pointer

forward pointer

eof

Figure 5.2: Input buffer

pointer moves to end of buffer (equal to buffer size N), the buffer is reloaded from the
beginning, and pointers are realigned for the current lexeme. Note that, the “eof” marker
is not the actual end of source file, but used as a sentinal character.

5.4 Regular Expressions

The identifiers of any program can be created by performing operations of union, concatena-
tions, and kleene closure, on the sets of letters and digits. This may also include underscore
characters(s). The identifiers so created are regular expressions. The regular expressions
also represent all the languages that can be described by performing these operations on
the symbols of these languages. If “letter ” stands for any letter or underscore, and digit

stands for any digit, then the C language identifiers can be described by:

letter (letter | digit)∗

Note that, ”letter ” is a representation for letter or underscore, and not both. For construc-
tion of regular expressions, we will prefer to drop the parentheses, which enforce the rules of
precedence. Following conventions are adopted for association and precedence of operators:

1. The operator ∗ is of highest precedence, and it is left associative2.

2. The concatenation is second highest associative, and it is also left associative.

3. “|′′ is left associative, and it has lowest precedence.

Example 5.2 Regular expressions for the set Σ = {a, b}.

1. Regular expression a|b is equal to {a, b}.

2. (a|b)(c|d) denotes set {ac, ad, bc, bd}.

3. a∗ denotes the set {ε, a, aa, aaa, ...} �

Example 5.3 Some definitions using regular expressions.

2The operators +,−, ∗ and concatenation (◦) are left associative for a expressions, say, a + b+ c, where
first a + b is computed, result is substituted in place of that, then c is added into the result. However, in
a ∗ ∗b ∗ ∗c, first bc is computed, then its resulted, say t, is used to compute at, so the net expression result
is ab

c

.

Lecture 5, 6: July 25-26, 2019 5-5

letter → A | B | ... | Z | a | b | ... | z |

digit → 0 | 1 | ... | 9, or[0− 9]

id → letter (letter | digit)∗

digits → digit digit∗

fraction → . digits | ε

exponent → (E | + | − | ε) digits) | ε

number → digits fraction exponent

relop →<|>|<=|>=|=|<>

�

5.5 Recognition of Tokens

In this section, given patterns for all needed tokens, we will design a piece of code that
examines the input string and finds a prefix, i.e., finds prefix that is a lexeme, matching one
of the patterns. We will make use of following standard examples, as grammar of branching
statements.

stmt → if expr then stmt | if expr then stmt else stmt | ε

expr → term relop term | term

term → id | number

In the above, the relop, i.e., relational operators are: >,<,>=, <=, <>,=, and they have
attribute values respectively as, GT, LT, GE, LE, NE, EQ.

In addition to these, the lexical analyser must strip out the white spaces, by recognizing the
token ws as defined below.

ws → (blank | tab | newline)+

The above are abstract symbols, which stands for their respective ASCII symbols. The
Table 5.1 shows the relations between lexemes, tokens, and attributes values.

5.5.1 Transition Diagrams

The first step in construction of a lexical analyzer is to convert the patterns into special
flow-charts, called “Transition diagrams”, having nodes or circles (called states), and edges
representing transitions. Each state represents a condition that occur during the scanning
of the input, and looking for a lexeme that matches one of the several patterns. Each edge
is labeled by a symbol or a set of symbols.

We assume that all the transition diagrams are deterministic, i.e., at every node, there is
never more than one edge for one symbol. Certain states in the transition diagrams are
called accepting or final states. These indicate that lexeme is found, and indicated by a
double circle. If it is necessary to retract the forward pointer one position, then we shall

5-6 Lecture 5, 6: July 25-26, 2019

Table 5.1: Relation between lexemes, tokens, and values

Lexemes Tokens Attribute values

Any ws - -
if if -
then then -
Any id if Pointer to symbol table
Any number number Pointer to symbol table
< relop LT

> relop GT

>= relop GE

<= relop LE

<> relop NE

= relop EQ

additionally place ∗ near the accepting state. One state in the transition diagram is called
start state, and labeled by start, with entering edge, which is not leaving from any state.

Example 5.4 Transition diagram for relational operators >,>=, <,<=.

0 1 2

3

4 5

6

Start >

<

=

=

other

return(relop, GE)

return(relop, GT)

∗

other

return(relop, LE)

∗

return(relop, NE)

>

7 return(relop, LT)

Figure 5.3: Transition diagram for relop

We consider the transition diagrams, for limited relop operators, as shown in Fig. 5.3. The
others can be similarly represented. Note the difference between transition diagram and
finite automata. In the FA there is ”other” while in the transition diagram it is not. For
details, see the Fig. 5.4.

5.5.2 Recognition of reserved words and identifiers

Usually the keywords if, then are reserved words, so they cannot be identifiers, though they
may look like identifiers. However, it is difficult to reject them when used as identifiers,

Lecture 5, 6: July 25-26, 2019 5-7

1

1

2

2 3

[0-9]

[0-9]

[0-9]

[0-9] Other
*

DFA

Transition Diagram

Figure 5.4: Transition diagram vs. FA

because identifiers are also the sequence of alphabets. However, the recognition of identifiers
is strait forward. The Fig. 5.5 shows a transition diagram to recognize the identifiers.

0 1 2

start letter

letter | digit

other
∗

return (getToken(), insertID())

Figure 5.5: Transition diagram for ids

There are two approaches to handle reserved words:

1. One way is to install the reserved words in the symbol table initially. A tag for this in
the symbol table will indicate that these are not ordinary tokens, and also tells that these
are reserved words. This approach is applicable in Fig. 5.5. When an identifier is found
using the transition diagram algorithm3, a function call to installID() places the token in
the symbol table if it is already not there. A pointer is returned that points to the entry
found. If it is not in the symbol table, its token id is returned by the getT oken(), else the
keyword is returned by it.

2. An alternative approach is to create separate transition diagram for each keyword, as
shown in Fig. 5.6. The transition diagram shows transitions for each character in the lexeme.
When “other” character (non letter and digit) is found, i.e. any character that cannot be
continuation of an identifier, the else is returned. If “other” is any character, that makes
the word as else val, then correct token is id, and same is returned. When this process is
adopted, the reserved words need to be prioritized as keywords and not as id.

start
e l s e

other

∗

Figure 5.6: Transition diagram for the keyword ”else”

The removal of whitespace (to skip it) is necessary for recognition of tokens. The transition
diagram in Fig. 5.7 skips the whitespace characters, where delim is space or newline or tab

3The transition diagram in Fig. 5.5 shows scanning of a letter followed by zero or more number of
letter/digit sequences. When a non-digit and non-letter symbol is encountered, the identifier is accepted.
This is the description of an algorithm.

5-8 Lecture 5, 6: July 25-26, 2019

character.

start delim other

∗
delim

Figure 5.7: Transition diagram for skipping whitespace

There are several ways of using transition diagrams to build lexical analyser. Regardless of
other strategy used, each state is represented by a piece of code. We may imagine a variable
named as state holds the number of the current state for a transition diagram. Now, a
switch statement may take us to the code based on value of that variable (i.e., state).

Disadvantages of Lexical Analyser Inspite of number of interesting fact and the ben-
efits of lexical analyser, it has some disadvantgaes also. Here are the following:

1. Significant amount of time is consued in reading the source program and partitioning
it in the form of tokens.

2. More difficult to develop and debug the lexer and its token dependencies.

3. Additional run time overhead is required to generate the lexer tables and construct
tokens.

References

[1] Compilers: Principles, Techniques, and Tools (2nd Edition) by Alfred V. Aho , Monica
S. Lam, et al., Sep 10, 2006

[2] Compiler design in C (Prentice-Hall software series) by Allen I Holub, Jan 1, 1990

[3] Engineering a Compiler, by Keith D. Cooper and Linda Torczon, Morgan Kaufmann
Publishers, 2004.

