Discrete Structures, Assignment # 1

ECC IV Semester 2014

April 8, 2014

- 1. Can a set be member of set? For example, $A = \{B\}$, is valid representation, when A = B becomes $A = \{A\}$. Is later logically acceptable? Give you reasoning.
- 2. What is wrong (if at all) in the following representation, where x and w are arbitrary names of programs: $A = \{x \mid x \text{ checks errors for } w, \text{ when source code of } w \text{ is input for machine code of } x\}$
- 3. Prove the following through deduction method:
 - (a) $A B \subseteq A$
 - (b) $A \cap (B A) = \phi$
 - (c) If $A \subset B$ then B (B A) = A
 - (d) If $A \subseteq B$, and $B \subseteq C$, show that $A \subseteq C$.
- 4. List the members of the following sets.
 - (a) $\{x \mid x \text{ is a real number such that } x^2 = 4\}$
 - (b) $\{x \mid x \text{ is an integer such that } x^2 = 2\}$
- 5. For each of the following sets, determine whether 1 is an element of that set.

 $\{\{1\},\{\{1\}\}\},\{\{1,2\},\{1,\{1\}\}\},\{\{\{1\}\}\}\}$

- 6. Draw the Venn diagrams for the followings:
 - (a) $A \cap B = A$
 - (b) $A \cup B = A$
 - (c) $A \oplus B = B$
 - (d) $A \cup B = A \cap B$
 - (e) $A B = A \cap \overline{B}$
- 7. How many elements are there in each of the following sets:
 - (a) $A = \phi$
 - (b) $B = \{\phi\}$
 - (c) $C = \{\{0,1\},\{1,2\}\}$
 - (d) $D = \{0, 1, 2, \{0, 1\}, \{1, 2\}, \{0, 1, 2\}, A\}$
 - (e) $E = \{0, \{\{1, \{3, 5\}, \{4, 5, 7\}, 8\}\}\}$
- 8. A language is set of all possible syntactically and semantically correct sentences. Is the English language finite or infinite, given than there is only finite length of sentences in it.
- 9. Justify that every program is a large integer.

- 10. Use mathematical Induction to prove the followings:
 - (a) $1^3 + 3^3 + 5^3 + \dots + (2n-1)^3 = n^2(2n^2 1)$
 - (b) $3^n + 7^n 2$ is integer multiple of 8.
- 11. Show that primes are infinite in numbers.

Note: Submission deadline: 12/04/2014 only, using A4 sheets stapled together.