
Pointers, arrays, and structures

Prof. (Dr.) K.R. Chowdhary, Director SETG
Email: kr.chowdhary@jietjodhpur.ac.in

webpage: http://www.krchowdhary.com

Jodhpur Institute of Engineering and Technology, SETG

September 17, 2015

kr chowdhary CF 1/ 19

Pointers

Pointer is data that holds the address of another memory item

A pointer itself can store the address of another pointer

int var1,var2,∗ptr;

∗ptr= 1234;

var1= ∗ptr;

var2= 1235;

ptr=&var2;

The operator & can be legally used only for variables and array
elements, but not for compound expressions and constants:
ptr=&a[5]; is valid, and ptr=&(a+b); is invalid.

The operator * can only be applied to pointer variables and
expressions.

kr chowdhary CF 2/ 19

Pointers

/* cptr1.c*/

#include <stdio.h>

int main(){

int i=18, *ip , **ipp;

ip = &i;

ipp=&ip;

printf("ip = %u, &ip = %u, ipp = %u \n", ip, &ip, ipp);

printf("&i = %u, i = %d \n", &i, i);

printf("hello\n");

return 0;

}

kr chowdhary CF 3/ 19

Pointers

A pointer variable may be assigned to a pointer variable of same type

Pointer variable can be incremented or decremented

difference between two pointer variable can be obtained by ptr1 -
ptr2.

Array pointer variables:

ptr=&arr[0];

Its contents can be accessed by: arr[0] or ∗ptr

The arr[1] can be accessed by ∗(ptr+1)

kr chowdhary CF 4/ 19

Pointers

/* cptr2.c*/

#include <stdio.h>

char carr[4] = "ABC";

double darr[3] = {1.2, 3.4, 5.6};

int main(){

char *cptr = &carr[0];

double *dptr = &darr[0];

for(; *cptr; cptr++, dptr++) {

printf("*cptr: %c, cptr: %u ", *cptr, cptr);

printf("*dptr: %g, dptr: %u\n", *dptr, dptr);

;}

return 0;

}

kr chowdhary CF 5/ 19

Pointers

Representation or the array “arr” in memory:

arr arr[0] arr[1] arr[2]

b

...

address

of arr[0]

Figure 1: Pointers and arrays

kr chowdhary CF 6/ 19

Structures

Structure in C is a combination of several variables of different types

structures of C are named by keyword “struct”, and behave like
records of language PL/1, Ada, Cobol. etc.

....

struct date {

int day;

char mon_name[3];

int year;

}; /*type definition*/

....

struct date birthday, exam, wedding;

/* variable definition*/

...

kr chowdhary CF 7/ 19

Structures

You may combine the type and data definition

....

struct date {

int day;

char mon_name[3];

int year;

} birthday, exam, wedding;

...

Initialization of structures:

.....

struct date birthday = {18, "Jan", 1995};

Those structures which are “static” can be initialized.

kr chowdhary CF 8/ 19

Structures

Referencing structures:

.¡element-name¿; The month[0] is first letter of the month.

birthday.year

birthday.month[0]

As opposed to arrays, entire structure variables can be transferred to
and from functions, as parameters, and function values.

Pointers to structures:

Useful for creating structures of structures types

We can also use pointers to access structures types

....

struct date *pbirthday; /*structure pointer variable*/

....

kr chowdhary CF 9/ 19

Structures

subsequently, we assign to pointer variable,

the address of structure:

...

pbirthday = &birthday;

.....

elements are eferred by:

...

(*pbirthday).year

....

Increment of a structure increases the pointer by the size of the pointer.

kr chowdhary CF 10/ 19

Structures

Array of struture:

...

struct date anniversary[] = {

{8, "MAr", 1980},

{20, "Aug", 1981},

{25, "Jul", 1982},

{2, "Aug", 1984},

{19, "Sep", 1985} };

....

As with array initializations, we ca omit the dimension size, as it can be
derived. Following is self referencing structures:

struct list_item {

char *contents;

....

struct list_item *sucessor;

};

kr chowdhary CF 11/ 19

Structures

/*str-p.c*/

#include <stdio.h>

#include <math.h>

int main(){

struct point {

int x, y;};

int ht, len, temp;

struct point maxpt = {1024, 768};

struct point pt1 = {50, 40};

struct point pt2 = {10, 10};

double dist;

ht = pt1.y-pt2.y;

len = pt1.x-pt2.x;

temp = ht*ht + len*len;

dist = sqrt((double)temp);

printf("%d, %d\n", pt1.x, pt1.y);

printf("%d, %d\n", pt2.x, pt2.y);

printf("%f\n", dist);

return 0;}

kr chowdhary CF 12/ 19

Structures

/*str-p2.c passsing structure as a parameter in function call*/

#include <stdio.h>

#include <string.h>

struct student {

int id;

char name[20];

float percent;

};

void func(struct student record);

int main(){

struct student record;

record.id = 1;

strcpy(record.name, "raju");

record.percent=86.4;

func(record);

return 0;

}

kr chowdhary CF 13/ 19

Structures

/*str-p2.c contd */

void func(struct student record) {

printf("Id is = %d\n", record.id);

printf("Name is=%s\n", record.name);

printf("percent is=%f\n", record.percent);

}

kr chowdhary CF 14/ 19

Structures

/*str-p3.c passing structure as a pointer in function call*/

#include <stdio.h>

#include <string.h>

struct student {

int id;

char name[20];

float percent;

};

void func(struct student *record);

int main(){

struct student record;

record.id = 1;

strcpy(record.name, "raju");

record.percent=86.4;

func(&record);

return 0;

}

kr chowdhary CF 15/ 19

Structures

void func(struct student *record) {

printf("Id is = %d\n", record->id);

printf("Name is=%s\n", record->name);

printf("percent is=%f\n", record->percent);

}

kr chowdhary CF 16/ 19

User defined data structures, using structures

b b b b b b b b

1

2 3

4 5 6 7

Figure 2: user-defined data structure.

kr chowdhary CF 17/ 19

Structures

/*str-p4.c User defined data structures*/

#include <stdio.h>

#include <string.h>

struct student {

int id;

struct student *lnode;

struct student *rnode;

};

int main(){

struct student *node, *start, *temp;

node = malloc(sizeof(struct student));

node->id = 1;

node->lnode=NULL;

node->rnode=NULL;

start=node;

kr chowdhary CF 18/ 19

Structures

/*str-p4.c User defined data structures contd.*/

node = malloc(sizeof(struct student));

node->id = 2;

node->lnode=NULL;

node->rnode=NULL;

start->lnode=node;

node = malloc(sizeof(struct student));

node->id = 3;

node->lnode=NULL;

node->rnode=NULL;

start->rnode=node;

... continue constructing reaming nodes

return 0;

}

By this we have constructed the root and two nodes, one each for left
and right sub-tree.

kr chowdhary CF 19/ 19

