
COMPILER CONSTRUCTION
(Code Generation)

Prof. K R Chowdhary
Email: kr.chowdhary@jietjodhpur.ac.in

Campus Director, JIET, Jodhpur

Tuesday 16th October, 2018

kr chowdhary Code generation 1/ 13



Introduction

It is final phase in compiler, takes as input the intermediate
representation along with relevant symbol table information, and
produces as output a semantically equivalent target program (see
Fig. 1).

Front end Code
optimization

Code
Generation

Source

Program

Intermediate

Code

Intermediate

Code

target

Program

Figure 1: Position of code generator.

The target program (machine code) must preserve the semantics
of the source program and be of high quality; it must make
effective use of the available resources.
A code generator has three primary tasks: instruction selection,
register allocation and assignment, and instruction ordering.

kr chowdhary Code generation 2/ 13



Basic Blocks and Flow Graph

It is helpful for discussing code generation. We can do a better job
of register allocation if we know how values are defined and used.
We can select the instruction in a better way, etc.
Partition the intermediate code into basic blocks, with following
properties

1 The flow of control can only enter the basic block through the
first instruction in the block.

2 Control will leave the block at the last instruction in the block.

The basic blocks become the nodes of a flow graph, whose edges
indicate which blocks can follow the other blocks.

kr chowdhary Code generation 3/ 13



Basic Blocks Algorithm

Algorithm-1: Partitioning three-address instructions set into basic
blocks.
INPUT: A sequence of three-address instructions.
OUTPUT: A list of the basic blocks, such that each instruction is
assigned to exactly one basic block.
METHOD: First, we determine those instructions in the
intermediate code that are leader instructions, that is, the first
instructions in some basic block. The rules for finding leaders are:

1 The first three-address instruction in the intermediate code is
a leader.

2 Any instruction that is the target of a conditional or
unconditional jump is a leader.

3 Any instruction that immediately follows a conditional or
unconditional jump is a leader.

kr chowdhary Code generation 4/ 13



Example

Intermediate code to set a 10×10 matrix to an identity matrix.

for i from 1 to 10 do

for j from 1 to 10 do

a[i,j] = 0.0;

for i from 1 to 10 do

a[i,i] = 1.0;

Intermediate code to set a 10×10 matrix to identity matrix

1) i = 1
2) j = 1
3) t1 = 10∗ i
4) t2 = t1+ j

5) t3 = 4∗ t2
6) t4 = t3−44
7) a[t4] = 0.0
8) j = j+1
9) if j <= 10 goto (3)

10) i = i +1
11) if i < 10 goto (2)
12) i = 1
13) t5 = i −1
14) t6 = 44∗ t5
15) a[t6] = 1.0
16) i = i +1
17) if i <= 10 goto (13)

kr chowdhary Code generation 5/ 13



Analysis of 10×10 matrix

1) i = 1
2) j = 1
3) t1 = 10∗ i
4) t2 = t1+ j

5) t3 = 4∗ t2
6) t4 = t3−44
7) a[t4] = 0.0
8) j = j+1
9) if j <= 10 goto (3)

10) i = i +1
11) if i < 10 goto (2)
12) i = 1
13) t5 = i −1
14) t6 = 44∗ t5
15) a[t6] = 1.0
16) i = i +1
17) if i <= 10 goto (13)

kr chowdhary Code generation 6/ 13



Flow Graph

The nodes of the flow graph are the basic blocks.
There is an edge from block B to block C if and only if it is
possible for the first instruction in block C to immediately follow
the last instruction in block B .
We say that B is a predecessor of C .
Often we add two nodes, called the entry and exit, that do not
correspond to executable intermediate instructions.
There is an edge from the entry to the first executable node of the
flow graph, i.e., to the basic block that comes from the first
instruction.

kr chowdhary Code generation 7/ 13



flow-graph from intermediate code

Entry

i = 1

j = 1

t1 = 10 ∗ i
t2 = t1 + j

t3 = 4 ∗ t2
t4 = t3− 44

j = j + 1

if i <= 10 goto B3

i = i+ 1
if i <= 10 goto B2

i = 1

t5 = i− 1
t6 = 44− t5
a[t6] = 1.0

i = i+ 1
if i <= 10 got B6

Exit

B1

B2

B3

B4

B5

B6

kr chowdhary Code generation 8/ 13



Optimization of Basic Block code by DAG

We can perform several code-improving transformations on the
code represented by the block.

1 Elimination of local common subexpressions

2 We can eliminate dead code

3 We can reorder statements that do not depend on one
another;

4 We can apply algebraic laws to reorder operands of
three-address instructions, and sometimes it simplify the
computation.

kr chowdhary Code generation 9/ 13



Finding Local Common Subexpressions

Common subexpressions can be detected by noticing, as a new
node M is about to be added, whether there is an existing node N

with the same children, in the same order, and with the same
operator. If so, N computes the same value as M and may be used
in its place.

a = b+ c

b = a−d

c = b+ c

d = a−d (1)

kr chowdhary Code generation 10/ 13



Finding Local Common Subexpressions

+

−

+

b0 c0

a
d0

c

b, d

Figure 2: DAG for basic block.

a= b+ c

d = a−d

c = d + c (2)

kr chowdhary Code generation 11/ 13



Other Example & Dead Code Elimination.

a = b+ c

b = b−d

c = c+d

e = b+ c (3)

+ e

+ a − b + c

b0 c0 d0

Figure 3: DAG for basic block in equation 3.

kr chowdhary Code generation 12/ 13



Other Example & Dead Code Elimination.

+ e

+ a − b + c

b0 c0 d0

Figure 4: DAG for basic block in equation 3.

We delete from a DAG any root (node with no ancestors) that has
no live variables attached. Repeated application of this
transformation will remove all nodes from the DAG that
correspond to dead code.
If, in Fig. 4, a and b are live but c and e are not, we can
immediately remove the root labeled e. Then, the node labeled c

becomes a root and can be removed. The roots labeled a and b

remain, since they each have live variables attached.
kr chowdhary Code generation 13/ 13


