
Advances in Compilers

Prof. (Dr.) K.R. Chowdhary, Director COE
Email: kr.chowdhary@jietjodhpur.ac.in

webpage: http://www.krchowdhary.com

JIET College of Engineering

August 4, 2017

kr chowdhary Compilers 1/ 24



Outlines:

1 Compiler basics: revisiting

2 New vs old compilers

3 Parallel language features

4 Parallel compilers

5 Modern Compilers

6 CETUS

7 Compiling

8 Lexical analyser generator

9 Resources for lex

kr chowdhary Compilers 2/ 24



Compilation steps

Compilers are language processors (input HLL, output LLL).

1 Tokenizing (lexical analysis)

2 Parsing (syntax analysis)

3 Static semantic checking

4 Intermediate code generation

5 optimization

6 final code generation

kr chowdhary Compilers 3/ 24



Compiler v/s Interpretation

Compiled programs run faster, if they are compiled into the
form that is directly executable on the underlying hardware

Static compilation can devote arbitrary amount of time for
program analysis and optimization

Hence JIT (just in time) compiler

Interpreted programs are typically smaller

Interpreted programs tends to be more portable

kr chowdhary Compilers 4/ 24



JIT: Just in time compilers

Traditionally there are two approaches to translation:

1 Compilation: translates one language to another (say, C to
assembly or C to machine). It can be further improved after
compilation.

2 Interpretation: No more improvement possible, and does
immediate execution.

kr chowdhary Compilers 5/ 24



What practice one should do along with principles?

Focus on implementing core parts of a compiler, with building
the infrastructure

Small language as an implementing target

Build from scratch a working interpreter for a small functional
language

The practical should help in understanding the language

Learning compilers provide strong theoretical foundations.

kr chowdhary Compilers 6/ 24



Early v/s new compilers

Early compilers: Written in low level languages like C or
assembly

Modern compilers are written in C/C++, C#, F#, Java.

Single individuals usually crafted compilers, but modern
compilers are typically large

In new: there are RISC, CISC machines of past, vector
processors, multicore, etc.

kr chowdhary Compilers 7/ 24



Advanced Languages: Parallel Programming

Number of process are running instructions simultaneously

Instruction cycle?

Say, fetch time (tf ) = decode time (td ) = run-time (tr ) = t
µ-secs, then parallel processing possible.

Then, a program of 100 machine instructions will take 300t µ

sec. on that machine.

If instruction Ii is in execution, Ii+1 is in decode cycle, and
Ii+2 is in fetch cycle. Then, it will take only 100t µ sec.!!

kr chowdhary Compilers 8/ 24



Multi-core CPUs

Consider the following code:

1. b = a+ c ;

2. d = b+ e;

3. f = g +d ;

Running 1. and 2. on two cpus at the same time?(Y/N)

Running 1. and 3. on two cpus at the same time?(Y/N)

Running bubble sort on two cpus at the same time?(Y/N)

Running quick sort on two cpus at the same time?(Y/N)

kr chowdhary Compilers 9/ 24



Modern compilers

Compiler algorithms for parsing, type checking, data-flow
analysis, loop transformations are based on - data dependent
analysis in graphs, register allocation based on graph coloring,
are new techniques.

Coding optimization: avoids redundant computations, register
allocation, enhancing locality, instruction level parallelism.

Optimized compilers produce code having some times peak
performance of target machine.

identifying some of the frequent bugs (e.g., improper memory
allocation, locations, race conditions, buffer over-run). Thus
providing better security.

kr chowdhary Compilers 10/ 24



Compiler challenges in multicore processors

Single core:

CPU

Memory

Cache

Multicore:

Memory

Cache L2

Cache L1 Cache L1

CPU1 CPU1

kr chowdhary Compilers 11/ 24



Parallel Compilers

In the era of multicore processors:

From now on, clock frequencies will rise slowly, if at all,

but the number of cores on processor is likely to double every
couple of years

by 2020 microprocessors are likely to have number of cores
hundreds of even thousands, with heterogeneous
functionalities

Exploiting large -scale parallel will be essential for improving
an applications performance

This is to do without undue programmer effort

kr chowdhary Compilers 12/ 24



Compiler challenges and agenda for future

The full potential can be achieved only if parallel compilers exist.
Agenda for the Compiler Community:

Open compiler architectures,

Open benchmarks for performance evaluation,

Make parallel program main-stream

Write compilers capable of self improvement

Develop algorithms for optimization of parallel code

Develop software as reliable as airplane

Enable system software that is secure at all levels

Expand compiler courses with new problem domains (such as
security)

kr chowdhary Compilers 13/ 24



Compiler challenges and agenda for future ...

Make parallel programming as mainstream

As on today the parallel programming exists only in databases,
and server-side applications

How to parallel this?: ∑i=999
i=0 ai

It is normally done as: fetch instruction, fetch data, decode,
execute (cycle repeated 1000 times)

For parallelism fetch opcode once only, decode once only,
fetch data 1000 times, run parallel with fetch !!

kr chowdhary Compilers 14/ 24



Compiler challenges and agenda for future ...

Enable system software that is secure at all levels:
sophisticated program analysis, prevention of software
vulnerabilities, like buffer over-flow and dangling pointers
arising from coding defects.

Automatic verification of complete software stack: “Instead of
debugging a program, prove that it meets its specifications,
and this proof should be checked by a computer program” -
John McCarthy.

kr chowdhary Compilers 15/ 24



CETUS: A source-to-source compiler infrastructure for
multicores

After the name of a constellation

Automatic parallelization

Input C program, output for 64 bit machines

CETUS symbolic expression tools:

1+2∗a+4− a⇒ 5+ a (folding)

a ∗ (b+ c)⇒ a ∗b+ a ∗ c (distribution)

(a ∗2)/(8∗ c)⇒ a/(4∗ c) (division)

(1− a)< (b+2)⇒ (1+ a+b)> 0 (normalization)

a && 0 && b ⇒ 0 (short-circuit evaluation)

kr chowdhary Compilers 16/ 24



CETUS: A source-to-source compiler infrastructure for
multicores

Cetus does automatic parallelization:

by using data dependence analysis

by array and scalar privatization

by reduction variable recognition

by induction variable substitution

kr chowdhary Compilers 17/ 24



gnu C compiler commands

#include<stdio.h>

int main(void)

{

printf("\n Hello World\n");

return 0;

}

$ gcc main.c

$ gcc main.c -o main

# The output of preprocessing stage

$ gcc -E main.c > main.i

# Assembly level output

$gcc -S main.c > main.s

kr chowdhary Compilers 18/ 24



gnu C compiler commands

#compiled code (without any linking)

$gcc -C main.c

#all the intermediate files using -save-temps function

$ gcc -save-temps main.c

$ ls

a.out main.c main.i main.o main.s

# Print all the executed commands using -V option

$ gcc -Wall -v main.c -o main

Using built-in specs.

COLLECT_GCC=gcc

COLLECT_LTO_WRAPPER=/usr/lib/gcc/i686-linux-gnu/4.6/lto-wrappe

Target: i686-linux-gnu

Configured with: ../src/con ....

Thread model: posix

gcc version 4.6.3 (Ubuntu/Linaro 4.6.3-1ubuntu5)

kr chowdhary Compilers 19/ 24



lexical analyser generator

$ gedit test.lex

/* just like Unix wc */

%{

int chars = 0;

int words = 0;

int lines = 0;

%}

%%

[a-zA-Z]+ { words++; chars += strlen(yytext); }

\n { chars++; lines++; }

. { chars++; }

%%

int main(){

yylex();

printf("%d %d %d\n", lines, words, chars);

return 0;

}
kr chowdhary Compilers 20/ 24



lexical analyser generator...

$ flex test.lex

$ ls

$ gcc lex.yy.c -lfl ; link to flex library

$ ./a.out

kr chowdhary Compilers 21/ 24



lexical analyser generator...

Flex

C Compiler

a.out

Specs of a scanner

- stdin
- *.lex

lex.yy.c

lex.yy.c

a.out

Input stream sequence of tokens

FLEX (Fast LEXical analyzer generator) is a tool for
generating scanners.

First, FLEX reads a specification of a scanner either from an
input file *.lex, or from standard input, and it generates as
output a C source file lex.yy.c.

Then, lex.yy.c is compiled and linked with the “-lfl” library

kr chowdhary Compilers 22/ 24



lexical analyser generator...

*.lex is in the form of pairs of regular expressions and C code.
lex.yy.c defines a routine yylex() that uses the specification to
recognize tokens; a.out is actually the scanner!

Command Sequence:

flex sample*.lex

gcc lex.yy.c -lfl

./a.out

Input file Format:

definitions

%%

rules

%%

user code

The definitions section: "name definition"

The rules section: "pattern action"

The user code section: "yylex() routine"

kr chowdhary Compilers 23/ 24



lexical analyser generator...

links:

http://epaperpress.com/lexandyacc/

http://dinosaur.compilertools.net/

http://dinosaur.compilertools.net/lex/

http://en.wikipedia.org/wiki/History of compiler construction

http://www.drdobbs.com/database/lex-and-yacc/184409830

kr chowdhary Compilers 24/ 24


