
Database Security and Privacy

Prof. K.R. Chowdhary, Director JIETCOE
Email: kr.chowdhary@jietjodhpur.ac.in

JIET COllege of Engineering

August 1, 2017

kr chowdhary Database Security 1/ 17

Introduction

A complete solution to either the security or the privacy problem
requires the following three steps:

Policy.

Mechanism.

Assurance.

kr chowdhary Database Security 2/ 17

Layers & types of information security

Access control

Auditing

Authentication

Encryption

Integrity controls

Backups

Application security

Database Security applying Statistical Method

kr chowdhary Database Security 3/ 17

Security related acitivties

Privileges

System privilege
Object Privileges

Abstraction

Database activity monitoring (DAM)

Native audit

Process and procedures

kr chowdhary Database Security 4/ 17

Database Security and Auditing: Laboratory 1: Build a

Database

create a database scheme with given database design

create primary and foreign keys for relations

instantiate the database with instances

insert a new instance to the created database

delete or update an existing instance

manipulate three options (RESTRICT, CASCADE, or SET
NULL) in referential integrity

kr chowdhary Database Security 5/ 17

Database Security and Auditing: Laboratory 1: Build a

Database

$ mysql -u root -p

mysql>

mysql> CREATE DATABASE books;

mysql> USE books;

mysql> CREATE TABLE authors (id INT, name VARCHAR(20),

email VARCHAR(20));

mysql> SHOW TABLES;

mysql> INSERT INTO authors (id,name,email) VALUES(1,

"Vivek","xuz@abc.com");

mysql> INSERT INTO authors (id,name,email)

VALUES(2,"Priya","p@gmail.com");

mysql> INSERT INTO authors (id,name,email)

VALUES(3,"Tom","tom@yahoo.com");

mysql> SELECT * FROM authors;

kr chowdhary Database Security 6/ 17

Database Security and Auditing: Laboratory 1: Build a

Database

mysql> exit

mysql> DROP TABLE authors;

mysql> DROP DATABASE books;

kr chowdhary Database Security 7/ 17

Database Security and Auditing: Access Control

Security policies can be implemented through access control rules.
Access control policies can be grouped into three major classes:

1 Discretionary access control (DAC),

2 Mandatory access control (MAC),

3 Role-based access control (RBAC).

kr chowdhary Database Security 8/ 17

Access Control

DAC policies of a database system can be implemented by an
access matrix model

An object can be a table, a view, a procedure or any other
database object.

A subject can be a user, a role, a privilege, or a module.

For instance, an owner can grant to others or revoke from
others, a privilege to execute an action on her files.

An access control list associates each object with a list of
subjects and actions

A capability list associates each user a list of objects and
actions that the user is allowed to exercise on the objects.

kr chowdhary Database Security 9/ 17

Access Control

GRANT privilege_name

ON object_name

TO {user_name |PUBLIC |role_name}

[WITH GRANT OPTION];

GRANT SELECT ON employee TO user1;

REVOKE privilege_name

ON object_name

FROM {user_name |PUBLIC |role_name}

REVOKE SELECT ON employee FROM user1;

kr chowdhary Database Security 10/ 17

Privileges and Roles:

Privileges: Privileges defines the access rights provided to a
user on a database object. There are two types of privileges.

1 System privileges: This allows the user to CREATE, ALTER,
or DROP database objects.

2 Object privileges: This allows the user to EXECUTE, SELECT,
INSERT, UPDATE, or DELETE data from database objects to
which the privileges apply.

Roles: Roles are a collection of privileges or access rights.

kr chowdhary Database Security 11/ 17

Access Control ...

SQL Server, MySQL, Oracle Database, DB2 and Sybase
support the implementation of access matrix models.

Role-based access control (RBAC) is an alternative to
traditional DAC and MAC

Role-based policies regulate the access of users to the
information based on organizational responsibilities

One vulnerability of DAC lies in the fact that there is no
control on flow of information.

kr chowdhary Database Security 12/ 17

Laboratory 2: Implementing DAC

This lab can be implemented in either Oracle 10g or Microsoft
SQL Server. Both Oracle 10g and SQL server support concept
of roles, as a result implementation of DAC can be extended
to the implementation of Role-based Access Control (RBAC).

Objective: To implement database security policies using
discretionary access control (DAC). Results: You are able to:

create users, roles, profiles, privileges.

interpret given database security policies into an access
control matrix.

assign privileges based on users.

assign privileges based on roles .

understand potential vulnerabilities of DAC.

kr chowdhary Database Security 13/ 17

Creating Roles:

CREATE ROLE role_name

[IDENTIFIED BY password];

CREATE ROLE testing

[IDENTIFIED BY pwd];

GRANT CREATE TABLE TO testing;

GRANT testing TO user1;

REVOKE CREATE TABLE FROM testing;

DROP ROLE role_name;

DROP ROLE testing;

kr chowdhary Database Security 14/ 17

Laboratory 2: Implementing MAC

The most common form of MAC is the multilevel security
policy using classification of subjects and objects in the
system.

The partial order is defined by a dominance relationship. An
access class consists of two components: a security level and a
set of categories.

Most of database vendors can offer functions supporting label
security through use of row-level security or fine-grained
access control,

kr chowdhary Database Security 15/ 17

Laboratory 3 Countering Trojan Horse Using MAC

interpret database security policies into MAC rules

create security levels and labels

bind security labels with objects

bind users or roles with security levels

students are able to justify that their implementation can

counter Trojan Horse attacks

kr chowdhary Database Security 16/ 17

Application security

Database applications are new major problem when increasing
bugs arising from programming errors in applications.

SQL injection is typical application attack as a result of
insecure code.

The malicious user can either gain access to information that
he/she was not authorized, or delete or alter data in the
back-end database.

For example, a hacker can fill the username with user and
password with guess’; delete from table users where username
like ’%. The database executes two SQL statements:

select user from users where username=’user’ and

password = ’guess’;

delete from table users where username like ’\%’

kr chowdhary Database Security 17/ 17

