Compilers: Theory, tools, scope.

Prof. (Dr.) K.R. Chowdhary, Director SETG
Email: kr.chowdhary@jietjodhpur.com
Webpage: http://www.krchowdhary.com

Jodhpur Institute of Engineering and Technology, SETG

August 22, 2014

kr chowdhary Compiler 1/ 19



Overview and History

What Do Compilers Do?

The Structure of a Compiler

The Syntax and Semantics of Programming Languages
Compiler Design and Programming Language Design

Computer Architecture and Compiler Design

¢ © ¢ ¢ ¢ ¢ ¢

Compiler Design Considerations

kr chowdhary Compiler 2/ 19



Overview and History (1)

Cause
@ Software for early computers was written in assembly language

@ The benefits of reusing software on different CPUs started to
become significantly greater than the cost of writing a
compiler

The first real compiler

@ FORTRAN compilers of the late 1950s

@ 18 person-years to build

kr chowdhary Compiler 3/ 19



Overview and History (2)

Compiler technology

is more broadly applicable and has been employed in rather
unexpected areas.

@ Text-formatting languages,

Q like nroff and troff; preprocessor packages like eqn, tbl, pic
© Silicon compiler for the creation of VLSI circuits

© Command languages of OS

© Query languages of Database systems

kr chowdhary Compiler 4/ 19



What Do Compilers Do (1)

@ A compiler acts as a translator,
@ transforming human-oriented programming languages
@ into computer-oriented machine languages.

@ Ignore machine-dependent details for programmer

— 1 Compiler |——ou—ous
Programming Machine
language language
(Source) (Target)

kr chowdhary Compiler 5/ 19



What Do Compilers Do (2)

Compilers may generate three types of code:
Pure Machine Code

@ Machine instruction set without assuming the existence of any
operating system or library.

@ Mostly being OS or embedded applications.
Augmented Machine Code

@ Code with OS routines and runtime support routines. More
often

Virtual Machine Code

@ Virtual instructions, can be run on any architecture with a
virtual machine

@ interpreter or a just-in-time compiler

o Ex. Java

kr chowdhary Compiler 6/ 19



What Do Compilers Do (3)

@ Another way that compilers differ from one another is in the
format of the target machine code they generate:
Assembly or other source format
Relocatable binary

@ Relative address
@ A linkage step is required

Absolute binary

@ Absolute address
¢ Can be executed directly

kr chowdhary Compiler 7/ 19



The Structure of a Compiler (1)

@ Any compiler must perform two major tasks:

Compiler

Analysis

Sysnthesis

@ Analysis of the source program

@ Synthesis of a machine-language program

kr chowdhary Compiler

8/ 19




The Structure of a Compiler (2)

sysntactic i
scanner Parser y sysntt.actlc
| routines
Tokens structure
source intermediate
program representation
(character stream)
optimizer
symbol tables
attribute tables
Used by all the phases
Y P code
generator
Target
machine code
kr chowdhary Compiler 9/ 19



The Structure of a Compiler:Scanner

Scanner:

@ The scanner begins the analysis of the source program by
reading the input, character by character, and grouping
characters into individual words and symbols (tokens)

@ RE ( Regular expression )

NFA (Non-deterministic Finite Automata )

DFA (Deterministic Finite Automata )

LEX

¢ © €

kr chowdhary Compiler 10/ 19



The Structure of a Compiler: Parser

Parser:

@ Given a formal syntax specification (typically as a context-free
grammar [CFG] ), the parse reads tokens and groups them into
units as specified by the productions of the CFG being used.

@ As syntactic structure is recognized, the parser either calls

corresponding semantic routines directly or builds a syntax
tree.

<

CFG (Context-Free Grammar )

BNF (Backus-Naur Form )

GAA (Grammar Analysis Algorithms )
LL, LR, SLR, LALR Parsers

YACC

¢ © ¢ ¢

kr chowdhary Compiler 11/ 19



The Structure of a Compiler: Semantic Routines

Semantic Routines:
@ Perform two functions
@ Check the static semantics of each construct
@ Do the actual translation

@ The heart of a compiler
@ Syntax Directed Translation
@ Semantic Processing Techniques
@ IR (Intermediate Representation)

kr chowdhary Compiler 12/ 19



The Structure of a Compiler: Optimizer

Optimizer :

@ The IR code generated by the semantic routines is analyzed
and transformed into functionally equivalent but improved IR
code

@ This phase can be very complex and slow

@ Peephole optimization

@ loop optimization, register allocation, code scheduling

o Register and Temporary Management
o Peephole Optimization

kr chowdhary Compiler 13/ 19



The Structure of a Compiler: Code Generator

Code Generator:
@ Interpretive Code Generation
@ Generating Code from Tree/Dag

@ Grammar-Based Code Generator

kr chowdhary Compiler 14/ 19



The Structure of a Compiler

distance := initial + rate * 60

1. 4. v abstract syntax
scanner = tree/attributes
[lexical analyser] / \
Tokens: idl :=1id2 +id3 * 60 idl +
V 2. yd \.,
Parser id2 / \
[Syntax Analyser] id3 int-to-real
3. 3.
Parse-tree: = Code generation 60
arse-tree: [intermediate code generation]
/ \ temp1 := inttoreal(60)
idl temp2 :=id3 * temp1
/ \ temp3 := id2 +temp2

id2 AN idl := temp
\lv 1d3/ 60 v

kr chowdhary Compiler 15/ 19



The Structure of a Compiler....

[Code optimizing] Symbol Table
1. | Position
Optimized templ :=1id3 * 60.0 2 Initial
intermediate id1 :=id2+ templ 3.
code —m— ’ rate
4.
[Code Generation]
MOVF id3, R2
Target Machine MULF 60.0, R2
code —— MOVFid2, R1
ADDF R2, R1
MOVFRI, id1

kr chowdhary Compiler 16/ 19



Tools

Compiler writing tools:
@ Compiler generators or compiler-compilers

© E.g. scanner and parser generators
@ Examples : Yacc, Lex

kr chowdhary Compiler 17/ 19



The Syntax and Semantics of Programming Language

@ A programming language must include the specification of
syntax (structure) and semantics (meaning).

@ Syntax typically means the context-free syntax because of the
almost universal use of context-free-grammar (CFGs)

Ex.
@ a = b + c is syntactically legal

@ b+ c=aisillegal

kr chowdhary Compiler 18/ 19



The Syntax and Semantics of Programming Language....

@ The semantics of a programming language are commonly
divided into two classes:

Static semantics

@ Semantics rules that can be checked at compiled time. Ex.
The type and number of a function’s arguments

Runtime semantics

@ Semantics rules that can be checked only at run time

kr chowdhary Compiler 19/ 19



