
Compilers: Theory, tools, scope.

Prof. (Dr.) K.R. Chowdhary, Director SETG
Email: kr.chowdhary@jietjodhpur.com

Webpage: http://www.krchowdhary.com

Jodhpur Institute of Engineering and Technology, SETG

August 22, 2014

kr chowdhary Compiler 1/ 19

Outlines

Overview and History

What Do Compilers Do?

The Structure of a Compiler

The Syntax and Semantics of Programming Languages

Compiler Design and Programming Language Design

Computer Architecture and Compiler Design

Compiler Design Considerations

kr chowdhary Compiler 2/ 19

Overview and History (1)

Cause

Software for early computers was written in assembly language

The benefits of reusing software on different CPUs started to
become significantly greater than the cost of writing a
compiler

The first real compiler

FORTRAN compilers of the late 1950s

18 person-years to build

kr chowdhary Compiler 3/ 19

Overview and History (2)

Compiler technology

is more broadly applicable and has been employed in rather
unexpected areas.

1 Text-formatting languages,

2 like nroff and troff; preprocessor packages like eqn, tbl, pic

3 Silicon compiler for the creation of VLSI circuits

4 Command languages of OS

5 Query languages of Database systems

kr chowdhary Compiler 4/ 19

What Do Compilers Do (1)

A compiler acts as a translator,

transforming human-oriented programming languages

into computer-oriented machine languages.

Ignore machine-dependent details for programmer

Compiler
Programming
language
(Source)

Machine
language
(Target)

kr chowdhary Compiler 5/ 19

What Do Compilers Do (2)

Compilers may generate three types of code:

Pure Machine Code

Machine instruction set without assuming the existence of any
operating system or library.

Mostly being OS or embedded applications.

Augmented Machine Code

Code with OS routines and runtime support routines. More
often

Virtual Machine Code

Virtual instructions, can be run on any architecture with a
virtual machine

interpreter or a just-in-time compiler

Ex. Java

kr chowdhary Compiler 6/ 19

What Do Compilers Do (3)

Another way that compilers differ from one another is in the
format of the target machine code they generate:

Assembly or other source format

Relocatable binary

Relative address
A linkage step is required

Absolute binary

Absolute address
Can be executed directly

kr chowdhary Compiler 7/ 19

The Structure of a Compiler (1)

Any compiler must perform two major tasks:

Compiler

Analysis Sysnthesis

Analysis of the source program

Synthesis of a machine-language program

kr chowdhary Compiler 8/ 19

The Structure of a Compiler (2)

symbol tables

attribute tables

Used by all the phases

source

program

scanner

Tokens
Parser

sysntactic

structure

sysntactic

routines

intermediate
representation

optimizer

code
generator

Target

machine code

(character stream)

kr chowdhary Compiler 9/ 19

The Structure of a Compiler:Scanner

Scanner:

The scanner begins the analysis of the source program by
reading the input, character by character, and grouping
characters into individual words and symbols (tokens)

RE (Regular expression)
NFA (Non-deterministic Finite Automata)
DFA (Deterministic Finite Automata)
LEX

kr chowdhary Compiler 10/ 19

The Structure of a Compiler: Parser

Parser:

Given a formal syntax specification (typically as a context-free
grammar [CFG]), the parse reads tokens and groups them into
units as specified by the productions of the CFG being used.

As syntactic structure is recognized, the parser either calls
corresponding semantic routines directly or builds a syntax
tree.

CFG (Context-Free Grammar)
BNF (Backus-Naur Form)
GAA (Grammar Analysis Algorithms)
LL, LR, SLR, LALR Parsers
YACC

kr chowdhary Compiler 11/ 19

The Structure of a Compiler: Semantic Routines

Semantic Routines:

Perform two functions

Check the static semantics of each construct
Do the actual translation

The heart of a compiler

Syntax Directed Translation
Semantic Processing Techniques
IR (Intermediate Representation)

kr chowdhary Compiler 12/ 19

The Structure of a Compiler: Optimizer

Optimizer :

The IR code generated by the semantic routines is analyzed
and transformed into functionally equivalent but improved IR
code

This phase can be very complex and slow

Peephole optimization

loop optimization, register allocation, code scheduling

Register and Temporary Management
Peephole Optimization

kr chowdhary Compiler 13/ 19

The Structure of a Compiler: Code Generator

Code Generator:

Interpretive Code Generation

Generating Code from Tree/Dag

Grammar-Based Code Generator

kr chowdhary Compiler 14/ 19

The Structure of a Compiler

distance := initial + rate * 60

scanner
[lexical analyser]

Tokens: id1 := id2 + id3 * 60

Parser
[Syntax Analyser]

:=

id1 +

id2
*

id3 60

Parse-tree:

:=

id1 +

id2
*

id3

60

int-to-real

abstract syntax

tree/attributes

1.

2.

3.

4.

Code generation
[intermediate code generation]

temp1 := inttoreal(60)
temp2 := id3 * temp1
temp3 := id2 +temp2

id1 := temp

5.

kr chowdhary Compiler 15/ 19

The Structure of a Compiler....

[Code optimizing]

temp1 := id3 * 60.0

id1 :=id2+ temp1

[Code Generation]

MOVF id3, R2
MULF 60.0, R2

MOVF id2, R1
ADDF R2, R1

MOVF R1, id1

Target Machine

code

Optimized
intermediate

code

Symbol Table

Position

Initial

rate

1.

2.

3.

4.

....

....

....

....

....

kr chowdhary Compiler 16/ 19

Tools

Compiler writing tools:

Compiler generators or compiler-compilers
1 E.g. scanner and parser generators
2 Examples : Yacc, Lex

kr chowdhary Compiler 17/ 19

The Syntax and Semantics of Programming Language

A programming language must include the specification of
syntax (structure) and semantics (meaning).

Syntax typically means the context-free syntax because of the
almost universal use of context-free-grammar (CFGs)

Ex.

a = b + c is syntactically legal

b + c = a is illegal

kr chowdhary Compiler 18/ 19

The Syntax and Semantics of Programming Language....

The semantics of a programming language are commonly
divided into two classes:

Static semantics

Semantics rules that can be checked at compiled time. Ex.
The type and number of a function’s arguments

Runtime semantics

Semantics rules that can be checked only at run time

kr chowdhary Compiler 19/ 19

