
High performance Architectures

Prof. (Dr.) K.R. Chowdhary, Director SETG
Email: kr.chowdhary@jietjodhpur.com

Jodhpur Institute of Engineering and Technology, SETG

September 29, 2015

kr chowdhary Microprocessors 1/ 32

Measuring & Reporting performance

Response time: time between start and completion of an event.

Response time is also called execution time

Manager of a large data center may be keen in throughput- the total
amount of work done in a given time.

Let Mx and My are machines, and say My takes time ty and Mx takes
time tx for some job.

Let
ty
tx

= n, then Mx is n times faster than My .

Let Performance of these machines are px and py , then

n =
ty

tx
=

1
py

1
px

=
px

py

kr chowdhary Microprocessors 2/ 32

Measuring performance

There are various times: CPU time, user time, and system time.

$time command runs programs and summarize system resource usage

For example: $time gcc prog1.c produces output as:

$ time gcc prog1.c

real 0m 0.445s

user 0m 0.072s

sys 0m 0.008s

real: time by your watch, user: cpu time on account of user, sys: systems
cpu time for IO, context switching, etc.

System Performance refers to elapsed time on unloaded system, cpu
performance refers to user cpu time on unloaded system

We are interested on CPU performance.

kr chowdhary Microprocessors 3/ 32

Programs for measuring performance

Dhrystone is a synthetic computing benchmark program developed in 1984
by Reinhold P. Weicker

It was intended to be representative of system (integer) programming.

The Dhrystone grew to become representative of general processor (CPU)
performance.

Dhrystone is result of research to determine instruction mix of typical
numerical computation.

There are five levels of programs for measuring performance:
1 Real applications: Real applications have input, output, and options.

Applications are: word-processing, text editing, excel, photoshop, etc.
2 Scripted Applications: Scripts are used to simulate applications.
3 Kernels: Small key pieces are extracted and used as applications. Examples

are “Livermore Loops”, “Linpack.”
4 Toy benchmarks: 10 to 100 lines of code. Examples: “Sieve of

Eratosthenes”, “Puzzle”, “Quicksort”.
5 synthetic Benchmarks: Whetstone and Dhrystone are standard.

kr chowdhary Microprocessors 4/ 32

Programs for measuring performance

One of the successful and standard benchmark is SPEC (Standard
Performance Evaluation Corporation)

www.spec.org

Desktop benchmarks:
1 These are two types: 1. CPU intensive benchmarks, 2) graphic intensive

benchmarks.
2 Other benchmarks are: transaction processing benchmarks, embedded

benchmarks (in hardware)

kr chowdhary Microprocessors 5/ 32

Some Quantitative principles of Computer Design

Make the common case fast: Favor the frequent over infrequent case.
Improving the frequent case over infrequent will definitely improve the
performance.

Over-flow is rare. So in design give more importance to efficiently execute
no over-flow.

Amdahl’s law: We define speed up. Say, pe is performance of the entire
task using performance enhancement where possible, and pn is
performance with no enhancement done, then, we can define the,

speedup =
pe

pn
(1)

Let te is execution time with enhancements, and tn is time with no
enhancement, then

speedup =
tn

te
(2)

Let job j1is 60 secs, and 20 secs of it can be enhanced, and rest cannot.
So fraction enhanced is 20/60 = 0.33. But, speedup is always > 1.

kr chowdhary Microprocessors 6/ 32

Some Quantitative principles of Computer Design

Ideally, enhanceable can execute in 0 (doing parallelism), so speedup is
60/40 = 1.5.

CPU Performance: Let Pc is cpu clock cycles for the program P, and T is
clock cycle time. The CPU time for program:

tcpu = Pc ×T (3)

or,

tcpu =
Pc

f
(4)

where f is clock frequency.

If we know the total number of instructions in program P, say IP , then we
can find out “instructions per clock”. Inverse of this is “clocks per
instructions” (CPI):

CPI =
Pc

IP
(5)

kr chowdhary Microprocessors 7/ 32

Some Quantitative principles of Computer Design

Alternatively.

tcpu = IP ×CPI ×T

=
IP ×CPI

f

CPU Performance:
1 Clock-cycle time (T) : depends on hardware technology and organization
2 CPI: Organization and instruction set Architecture
3 Instruction count (IP): Instruction set architecture and compiler technology

Some times it is useful to design CPU based on total cpu clock cycles (Pc)
as:

PC =
n

∑
i=1

IPi
×CPIi (6)

where IPi
represents the number of times the instruction IPi

is executed in
program P, and CPIi is average number of clocks per Instruction i .

kr chowdhary Microprocessors 8/ 32

Classification of parallel Processors

One classification by M.J. Flynn
considers the organization of a
computer system by the number
of instructions and data items
that can be manipulated
simultaneously.
The sequence of instructions read
from the memory constitute an
instruction stream.
The operation performed on data
in the processor constitutes a
data stream.
Parallel processing may occur in
instruction stream stream or data
stream, or both.

1 Single-instruction single-data
streams (SISD): Instructions are
executed sequentially.

2 Single-instruction multiple-data
streams (SIMD): All processors
receive the same instruction from
control unit, but operate in
different sets of data.

3 Multiple-instruction single-data
streams (MISD): It is of
theoretical interest only as no
practical organization can be
constructed using this
organization.

4 Multiple-instruction multiple-data
streams (MIMD): Several
programs can execute at the
same time. Most multiprocessors
come in this category.

kr chowdhary Microprocessors 9/ 32

Flynn’s taxonomy of computer architecture(1966)

Instruction stream

Instr. stream data stream

1. SISD

Control unit Processor (P) memory (M)

Program loaded

from front end

data stream

data

P1

Pn

M1

Mn

CU
b
b
b

b
b
b

b
b
b

2. SIMD

I/O

stream

Figure 1: SISD and SIMD architecture

Instruction stream

Instr. stream data stream

Control unit Processor Memory

Instruction stream

Instr. stream data stream

Control unit Processor memory

b
b
b

b

b
b

3. MIMD

1 1 1

n n n

Figure 2: MIMD Architecture.

One of the parallel processing class that does not fit into this classification is
pipeline processing.

kr chowdhary Microprocessors 10/ 32

Parallel processing

Parallel Processing:

Increasing speed by doing many things in parallel.

Let P is a sequential processor processing the task T in sequential
manner. If T is partitioned into n subtasks T1,T2, . . . ,Tn of appox. same
size, then a processor P

′

(say) having n processors can be programmed so
that all the subtasks of T can execute in parallel.

Then P
′

executes n times faster than P.

A failure of CPU is fatal to a sequential processor, but not in the case of
parallel processor.

Some of the applications of parallel computer (processors) are:
1 Expert system for AI
2 Fluid flow analysis,
3 Seismic data analysis
4 Long range weather forecasting,
5 Computer Assisted tomography
6 Nuclear reactor modeling,
7 Visual image processing
8 VLSI design

The typical characteristic of parallel computing are: vast amount of
computation, floating point arithmetic, vast number of operands.

kr chowdhary Microprocessors 11/ 32

Pipelining

A typical example of parallel processing is a one-dimensional array of
processors, where there are n identical processors P1 . . .Pn and each having
its local memory. These processors communicate by message passing
(send - receive).

b b b

b b b
P1 P2 Pn

serial IO -operations(send-receive)

Figure 3: Pipeline processing.

There are total n operations going on in parallel.
A pipe line constitutes a sequence of processing circuits, called segments
or stages.

- m stage pipeline has same throughput as m separate units.

segment 1 segment 2 segment m

R1 C1 R2 C2 Rm Cm
R

Ri: Buffer register Ci: Computing element

Figure 4: Pipeline segments
kr chowdhary Microprocessors 12/ 32

Pipeline Processors

1 Instruction pipeline: Transfer of instructions through various stages of cpu,
during instruction cycle: fetch, decode, execute. Thus, there can be three
different instructions in different stages of execution: one getting fetched,
previous of that is getting decoded, and previous to that is getting
executed.

2 Arithmetic pipeline: The data is computed through different stages.

segment 1 segment 2 segment 3

istr. fetch Instr. decode Instr. execute
instruction results

X = (XM , XE), Y = (YM , YE)

segment 1

compare align add normalize
exponent mantissa mantissa resulst

seg. 2 seg. 3 seg. 4

Instr. adr.

X + Y

Figure 5: Instruction and data pipeline examples.

kr chowdhary Microprocessors 13/ 32

Pipe-lining Example

Consider an example to compute: Ai ∗Bi +Ci , for i = 1,2,3,4,5. Each
segment has r registers, a multiplier, and an adder unit.

R1 R2

Multiplier

R3

Adder

R4

R5

Figure 6: A segment comprising registers and computing elements.

R1← Ai , R2← Bi ; input Ai ,Bi

R3← R1 ∗R2, R4← C ; multiply and i/ C

R5← R3+R4; add Ci to product

kr chowdhary Microprocessors 14/ 32

Pipe-lining Example

Table 1: Computation of expression Ai ∗Bi +Ci in space and time in 3-stage pipeline.

Clock pulse Segment 1 Segment 2 Segment 3
no. R1, R2 R3, R4 R5

1. A1, B1 −, − -
2. A2, B2 A1 ∗B1, C1 -
3. A3, B3 A2 ∗B2, C2 A1 ∗B1+C1

4. A4, B4 A3 ∗B3, C3 A2 ∗B2+C2

5. A5, B5 A4 ∗B4, C4 A3 ∗B3+C3

6. − − A5 ∗B5, C5 A4 ∗B4+C4

7. − − −, − A5 ∗B5+C5

Any operator that can be decomposed into a sequence of sub-operations
of about the same components can be implemented by pipeline processor.
Consider that for a k-segment pipeline with clock cycle time =tp sec.,
with total n no. of tasks (T1,T2, . . . ,Tn) are required to be executed.

T1 requires time equal to k .tp secs. Remaining n−1 tasks emerge from
the pipeline at the rate of one task per clock cycle, and they will be
completed in time of (n−1)tp sec, so total clock cycles required =
k+(n−1).

For k = 3 segment and n = 5 tasks it is 3+(5−1) = 7, as clear from
table 1.

kr chowdhary Microprocessors 15/ 32

Computational Models

Consider an instruction pipeline unit (segment) that performs the same
operation and takes time equal to tu to complete each task. Total time for
n tasks is n.tu. The speedup for no. of segments as k and clock period as
tp is:

S(n) =
n.tu

(k+(n−1))tp
(7)

For large number of tasks, n>> k−1, k+n−1≈ n, so,

S(n) =
n.tu
n.tp

(8)

=
tu

tp
(9)

Instruction pipelining is similar to use of assembly line in manufacturing
plant

An instruction’s execution is broken in to many steps, which indicates the
scope for pipelining

pipelining requires registers to store data between stages.

kr chowdhary Microprocessors 16/ 32

Computational Models

Parallel computation with serial section model:

It is assumed that fraction f of a given task (computation) cannot be
divided into concurrent subtasks. The remaining part (1− f) is assumed
to be dividable. (for example, f may correspond to data i/p).

The time required to execute the task on n processors is:

tm = f .ts +(1− f).
ts

n
(10)

The speedup is therefore,

S(n) =
ts

f .ts +(1− f). tsn
(11)

=
n

1+(n−1).f
(12)

So, S(n) is primarily determined by the code section, which cannot be
divided.

If task is completely serial (f = 1), then no speedup can be achieved even
by parallel processors.

For n→ ∞,

S(n) =
1

f
(13)

which is maximum speedup.

kr chowdhary Microprocessors 17/ 32

Computational Models

Improvement in performance (speed) of parallel algorithm over a
sequential is limited not by no. of processors but by fraction of the
algorithm (code) that cannot be parallelized. (Amdahl’s law).

Considering the communication overhead:

S(n) =
ts

f .ts +(1− f)(ts/n)+ tc
(14)

=
n

f .(n−1)+1+n(tc/ts)
(15)

For n→ ∞,

S(n) =
n

f (n−1)+1+n(tc/ts)
(16)

=
1

f +(tc/ts)
(17)

Thus, S(n) depends on communication overhead tc also.

kr chowdhary Microprocessors 18/ 32

Pipe-lining processors

Instruction Pipe-lining: typical stages of pipeline are:

1 FI (fetch instruction)

2 DI (decode Instruction)

3 CO (calculate operands)

4 FO (fetch operands)

5 EI (execute instruction)

6 WO (write operands)

kr chowdhary Microprocessors 19/ 32

Instruction Pipe-lining

Nine different instructions are to be executed

The six stage pipeline can reduce the execution time for 9 instructions
from 54 time units to 14 time units.

time units →
Instruc. 1 2 3 4 5 6 7 8 9 10 11 12 13 14

In1 FI DI CO FO EI WO

In2 FI DI CO FO EI WO

In3 FI DI CO FO EI WO

In4 FI DI CO FO EI WO

In5 FI DI CO FO EI WO

In6 FI DI CO FO EI WO

In7 FI DI CO FO EI WO

In8 FI DI CO FO EI WO

In9 FI DI CO FO EI WO

The diagram assumes that each instruction goes through 6 stages of
pipeline.

But, for example, a load instruction does not need WO.

It is also assumed that there is no memory conflicts, for example, FI, FO,
WO in all require memory access (together).

The value may be in cache, or FO/WO may be null.

Six stages may not be of equal duration, conditional branch/interrupt
instruction may invalidate several fetches

After which stage it should check for conditional branch/interrupt?

kr chowdhary Microprocessors 20/ 32

Factors in Instruction Pipe-lining

Overhead in each stage of
pipeline for data movements
buffer to buffer

Amount of control logic needed
to handle memory/register
dependencies increases with size
of pipeline

It needs time for the buffers to
operate

Pipeline Hazard occur when
pipeline or its portion stalls.

1 Resource hazard: Two or more
instructions in pipeline require
same resource (say ALU/reg.)
(called structure hazard)

2 Data hazards: conflict in
memory access

3 Control hazards: (called branch
hazards) wrong decision in
branch prediction

kr chowdhary Microprocessors 21/ 32

Vector Processing

In many computational
applications, a problem can be
formulated in terms of vectors
and matrices. Processing these
by a special computer is called
vector processing.

A vector is:
V = [V1V2V3 . . .Vn]. The index
for Vi is represented as V [i]. A
program for adding two vectors A
and B of length 100, to produce
vector C is:

Scalar Concept:

for(i=0; i < 100; i++)

c[i]=b[i]+a[i];

In machine language we write it
as:

mvi i, 0

loop: read A[i]

read B[i]

store i = i +1

cmp i, 100

jnz loop

Accesses the arrays A and B, and
only counter needs to updated.
The vector processing computer
eliminates the need of fetching
the instructions, and executing
them. As they are fetched only
once only, decoded once only, but
executes them 100 times. This
allows operations to be specified
only as:

C(1 : 100) =A(1 : 100)+B(1 : 100)

kr chowdhary Microprocessors 22/ 32

Vector Processing

Vector instructions includes the
initial address of operands, length
of vectors, and operands to be
performed, all in one composition
instruction. The addition is done
with a pipelines floating pointing
point adder. It is possible to

design vector processor to store
all operands in registers in
advance.

It can be applied in matrix
multiplication, for
[l ×m]× [m×n].

kr chowdhary Microprocessors 23/ 32

RISC v/s CISC

CISC: (Complex instruction set
computer)

1 Complex programs have
motivated the complex and
powerful HLL. This produced
semantic gap between HLL and
machine languages, and
required more effort in
compiler constructions.

2 The attempt to reduce the
semantic gap/simplify compiler
construction, motivated to
make more powerful instruction
sets. (CISC - Complex
Instruction set computing)

3 CISC provide better support for
HLLs

4 Lesser count of instructions in

program, thus small size, thus
lesser memory, and faster
access

RISC: (Reduced instruction set
computer)

1 Large number of Gen. purpose
registers, use of compiler
technology to optimize register
usage

2 R-R operations (Adv.?)
3 Simple addressing modes
4 Limited and simple instruction

set (one instruction per
machine cycle)

5 Advantage of simple
instructions?

6 Optimizing pipeline

kr chowdhary Microprocessors 24/ 32

Simulators for teaching learning Computer architectures

visualization is one tool to deal with the emerging complexity and the
increasing rate of execution processing.

Figure 7: Simulator output.

kr chowdhary Microprocessors 25/ 32

EasyCPU

Figure 8: Dialog box template for MOV instruction.

kr chowdhary Microprocessors 26/ 32

Simulators for teaching learning Computer architectures: EasyCPU

for an introductory-level computer science

simple version of a microcomputer based on the Intel x86 microprocessor

It provides the student with basic tools to edit, assemble, run, and debug
small programs in a window-friendly environment.

focuses on the visualization of the execution process of individual assembly
instructions alone and within a program.

kr chowdhary Microprocessors 27/ 32

RTLSim

RTLSim is a UNIX program that simulates the datapath of a simple
nonpipelined MIPs-like processor.

When running the simulator, the student (user) acts as the control unit for
the data-path by selecting the control signals that will be active in each
control step.

two main components:
1 a visual representation of the data-path and
2 a control signals window.

The datapath is made up of a 32-register register file, ALU, memory
interface, and other registers to store values (including the program
counter and current instruction register).

Three internal buses are used to connect these components.

It is possible to execute most MIPs instructions on the datapath.

kr chowdhary Microprocessors 28/ 32

EasyCPU

Figure 9: RTLSim main window.

kr chowdhary Microprocessors 29/ 32

EasyCPU

consider the execution of the MIPs instruction“add $3, $4, $5” (i.e. R3 =
R4 + R5).

Assuming instruction was fetched into the instruction register (IR), then
the settings shown in the control signals window of Figure ?? will execute
this instruction.

Windows that show the contents of the memory and the register file may
also be opened.

kr chowdhary Microprocessors 30/ 32

RTLSim

Figure 10: RTLSim Register Window.

kr chowdhary Microprocessors 31/ 32

BENEFITS AND EVALUATION

simulators have number of additional benefits in terms of (1) financial
support; (2) obsolescence; (3) access, and (4) research.

modern processors are optimized for performance and not simplicity;

simulation is increasingly being used as a tool to support the teaching of
computer architecture; and

when simulators are combined with visualizations, they become an even
more effective teaching tool.

kr chowdhary Microprocessors 32/ 32

