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Queuing Theory Notation

Queuing characteristics:
@ arrival process
@ Service time distribution
@ Number of servers
@ System capacity
@ Population size
@ Service discipline
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Figure 1: A Queuing system
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Arrival Processes

Suppose jobs arrive at times tq,to, ..., t;

@ Random variables 7; = t; — t;_1 are inter-arrival times

@ There are many possible assumptions for the distribution of
the 7;. Typical assumptions for the 7; :

@ Independent
o ldentically distributed

@ Many other possible assumptions:

o Bulk arrivals
o Balking
o Correlated arrivals

For Poisson arrival, the inter-arrival times are:
@ 1ID (independent and identically distributed)
@ exponentially distributed (i.e., F(x) =1—e */?)
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Other Queue Features

Service time:
@ Interval spent actually receiving service (exclusive of waiting
time)
@ Like with arrival processes, there are many possible
assumptions:
¢ 1D random variables
@ exponential service time distribution

Number of servers:

@ Servers may or may not be identical

@ Service discipline determines allocation of customers to servers
System capacity:

@ Maximum no. of customers in system

@ May be finite or infinite
Population size:

@ Total number of potential customers

@ May be finite or infinite
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Other Queue Features

Service discipline:

@ The order in which waiting customers are serviced

@ Many possibilities, including

First-come-first-serve (FCFS), the most common
Last-come-first-serve (LCFS)

Last-come-first-serve preempt resume (LCFS-PR)

Round robin (RR) with finite quantum size

Processor sharing (PS) — RR with infinitesimal quantum size
Infinite server (IS)
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Queuing Discipline Specification

Queuing follows Kendall’s notation: Six queue attributes
@ A: inter-arrival time distribution
@ S: service time distribution
@ m: number of servers
@ B: number of buffers (system capacity)
@ K: population size
@ SD: service discipline
Inter-arrival and service time specifiers
@ M exponential
@ E, Erlang with parameter k
@ Hy hyperexponential with parameter k
@ D deterministic
@ G general (any distribution)
Omitted specifiers assume certain defaults:
@ infinite buffer capacity
@ infinite population size
@ FCFS service discipline
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Queuing Discipline Specification: Example

M/D/5/40/200/FCFS:

@ Exponentially distributed interarrival times

@ Deterministic service times

@ Five servers

@ Forty buffers (35 for waiting)

@ Total population of 200 customers

@ First-come-first-serve service discipline
M/M/1:

@ Exponentially distributed interarrival times

@ Exponentially distributed service times

@ One server

@ Infinite number of buffers

@ Infinite population size

@ First-come-first-serve service discipline
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Example: typical bank

Q 5 tellers

© customers form a single line and are serviced FCFS

© excluding a run on the bank, waiting room is infinite
© the population is infinite

@ bulk arrivals are possible if many people arrive together

@ Service time and inter-arrival time distributions?

@ measure them with a watch at the bank

@ Or, make mathematically simplifying assumptions

o Latter is most common and exponential distribution is typical
@ Combining these facts and assumptions

¢ M/M/1 queue

s As we shall see, the mean queue length (including one in

service) for an M/M/1 queue is

u—Aa
@ A = mean inter-arrival time, and = mean service time
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Notation and Basic “Facts”

T is job interarrival time

A = 1/E[7] mean job arrival rate

s is service time per customer (job)

m is number of servers

1 = 1/E[s] is mean service rate per server

ng is number of jobs waiting to receive service

ns is number of jobs in service

n = ng+ ns is number of jobs in the system

r is response time (service time plus queueing delay)

© © 6 ¢ ¢ ¢ ¢ ¢ ¢ ¢

w is waiting time (queueing delay only)

System must be “stable” to have an steady state solution:
@ Number of jobs in the system is finite
@ Requires the relation A < mu hold unless

s the population is finite (queue length is bounded)

o the buffer capacity is finite (arrivals are lost when queue is full)
@ (in these cases, system is always stable)

kr chowdhary Queuing Theory 9/ 13



M /M /1 Queue Analysis

@ M/M/1 is special case of a birth-death process
o A=A forall i,j
o uj=p; foralli,j
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Figure 2. M/M/1 Queue.
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@ pg is prob. of being in state 0, p; = %po

@ proba. of in state n, p, =
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M /M /1 Queue Analysis

® p,= (&)”po, n=12,...,0
e p= —, is called “traffic intensity”

@ Mean queue length E[n] or 7 is

=i}
1
DM
S
e
3

3
Il
N

I
MS

n(l—p)p”

3

—_
[
©

@ probability of n or more jobs in system: p”
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M /M /1 Queue Example

@ Let there is a queue with u =0.5,4 =0.3

@ then, we can calculate: utilization U = p = %

@ mean number of jobs in the system (71) = ﬁ
: -__1 _ 1 _

@ mean response time 7 = ;=3 = 55 = 5.0
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@ m servers

- model for multiple tellers in a bank

- shared memory multiprocessors

- packet routing in Internet

- search engines to respond query

- packet & message communication in wireless mobile net
- many similar application.

Assumptions: All servers have same service rate U, single queue for
access to all servers, arrival rate 4
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