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Queuing Theory Notation

Queuing characteristics:

arrival process
Service time distribution
Number of servers
System capacity
Population size
Service discipline
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Figure 1: A Queuing system
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Arrival Processes

Suppose jobs arrive at times t1,t2, ...,tj

Random variables τj = tj − tj−1 are inter-arrival times

There are many possible assumptions for the distribution of
the τj . Typical assumptions for the τj :

Independent
Identically distributed

Many other possible assumptions:

Bulk arrivals
Balking
Correlated arrivals

For Poisson arrival, the inter-arrival times are:

IID (independent and identically distributed)

exponentially distributed (i.e., F (x) = 1− e−x/a)
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Other Queue Features

Service time:

Interval spent actually receiving service (exclusive of waiting
time)
Like with arrival processes, there are many possible
assumptions:

IID random variables
exponential service time distribution

Number of servers:

Servers may or may not be identical

Service discipline determines allocation of customers to servers

System capacity:

Maximum no. of customers in system

May be finite or infinite

Population size:

Total number of potential customers

May be finite or infinite
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Other Queue Features

Service discipline:

The order in which waiting customers are serviced

Many possibilities, including

First-come-first-serve (FCFS), the most common
Last-come-first-serve (LCFS)
Last-come-first-serve preempt resume (LCFS-PR)
Round robin (RR) with finite quantum size
Processor sharing (PS) — RR with infinitesimal quantum size
Infinite server (IS)
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Queuing Discipline Specification

Queuing follows Kendall’s notation: Six queue attributes

A: inter-arrival time distribution
S : service time distribution
m: number of servers
B : number of buffers (system capacity)
K : population size
SD: service discipline

Inter-arrival and service time specifiers

M exponential
Ek Erlang with parameter k
Hk hyperexponential with parameter k
D deterministic
G general (any distribution)

Omitted specifiers assume certain defaults:

infinite buffer capacity
infinite population size
FCFS service discipline
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Queuing Discipline Specification: Example

M/D/5/40/200/FCFS:

Exponentially distributed interarrival times

Deterministic service times

Five servers

Forty buffers (35 for waiting)

Total population of 200 customers

First-come-first-serve service discipline

M/M/1:

Exponentially distributed interarrival times

Exponentially distributed service times

One server

Infinite number of buffers

Infinite population size

First-come-first-serve service discipline
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Example: typical bank

1 5 tellers
2 customers form a single line and are serviced FCFS
3 excluding a run on the bank, waiting room is infinite
4 the population is infinite
5 bulk arrivals are possible if many people arrive together

Service time and inter-arrival time distributions?
measure them with a watch at the bank
Or, make mathematically simplifying assumptions
Latter is most common and exponential distribution is typical

Combining these facts and assumptions
M/M/1 queue
As we shall see, the mean queue length (including one in
service) for an M/M/1 queue is

λ

µ −λ

λ = mean inter-arrival time, and µ= mean service time
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Notation and Basic “Facts”

τ is job interarrival time

λ = 1/E [τ ] mean job arrival rate

s is service time per customer (job)

m is number of servers

µ = 1/E [s] is mean service rate per server

nq is number of jobs waiting to receive service

ns is number of jobs in service

n = nq+ns is number of jobs in the system

r is response time (service time plus queueing delay)

w is waiting time (queueing delay only)

System must be “stable” to have an steady state solution:

Number of jobs in the system is finite
Requires the relation λ <mµ hold unless

the population is finite (queue length is bounded)
the buffer capacity is finite (arrivals are lost when queue is full)
(in these cases, system is always stable)
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M / M /1 Queue Analysis

M/M/1 is special case of a birth-death process

λi = λj for all i , j

µi = µj for all i , j

0 1 2 j j + 1

λ

µ

λ λ λ λ λλ0

µµ µ µµ1
µ

j − 1

Figure 2: M/M/1 Queue.

proba. of in state n, pn = λ0...λn−1

µ1µ2...µn
p0

p0 is prob. of being in state 0, p1 =
λ0
µ1
p0

kr chowdhary Queuing Theory 10/ 13



M / M /1 Queue Analysis

pn = (λ
µ )

np0, n= 1,2, ...,∞

ρ = λ
µ , is called “traffic intensity”

Mean queue length E [n] or n̄ is

n̄ =
∞

∑
n=1

npn

=
∞

∑
n=1

n(1−ρ)ρn

=
ρ

1−ρ

probability of n or more jobs in system: ρn
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M / M /1 Queue Example

Let there is a queue with µ = 0.5,λ = 0.3

then, we can calculate: utilization U = ρ = λ
µ = 0.3

0.5 = 0.6

mean number of jobs in the system (n̄) = ρ
1−ρ = 1.5

mean response time r̄ = 1
µ−λ = 1

0.2 = 5.0
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M / M /m Queue

m servers

- model for multiple tellers in a bank

- shared memory multiprocessors

- packet routing in Internet

- search engines to respond query

- packet & message communication in wireless mobile net

- many similar application.

Assumptions: All servers have same service rate µ , single queue for
access to all servers, arrival rate λ
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