% Formatting mathematical part
\documentclass[11pt,a4paper,oneside]{article}
\usepackage[latin1]{inputenc}
\title{Practical Typesetting}
\author{KR Chowdhary \\CSE Department}
\date{\today}
\begin{document}
\maketitle
The foundations of the rigorous study of \textit{analysis} were laid in the nineteenth century, notably by the mathematicians Cauchy and Weierstrass. Central to the study of this subject are the formal definitions of \textit{limits} and \textit{continuity}.
Let $D$ be a subset of $\bf R$ and let $f \colon D \to \textbf{R}$ be a real-valued function on $D$. The function $f$ is said to be \textit{continuous} on $D$ if, for all $\epsilon > 0$ and for all $x \in D$, there exists some $\delta > 0$ (which may depend on $x$) such that if $y \in D$ satisfies
\[ |y - x| < \delta \]
then
\[ |f(y) - f(x)| < \epsilon. \]
One may readily verify that if $f$ and $g$ are continuous
functions on $D$ then the functions $f+g$, $f-g$ and
$f.g$ are continuous. If in addition $g$ is everywhere
non-zero then $f/g$ is continuous.
\end{document}