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Abstract

This note provides a brief introduction to Lambda calculus, relates it to a
turing machine, and recursive functions, provides examples as how functions can
be used define computation, instead of storing intermediate results. The note
also suggests its application in programming language design, and compilers.

1 Introduction

What is a function? In modern mathematics, the prevalent notion is that of “func-
tions as graphs”: each function f has a fixed domain X and codomain Y , and a
function f : X → Y is a set of pairs f ⊆ X × Y such that for each x ∈ X, there
exists exactly one y ∈ Y such that (x, y) ∈ f . Two functions f, g : X → Y are
considered equal if they yield the same output on each input, i.e., f(x) = g(x) for
all x ∈ X. This is called the extensional view of functions, because it specifies that
the only thing observable about a function is how it maps inputs to outputs.

However, before the 20th century, functions were rarely looked at in this way.
An older notion of functions as that of “functions as rules”. In this view, to give a
function means to give a rule for how the function is to be calculated. Often, such a
rule can be given by a formula, for instance, the familiar f(x) = x2 or g(x) = sin(ex)
from calculus. As before, two functions are extensionally equal if they have the same
input-output behavior; but now we can also speak of another notion of equality: two
functions are intensionally equal if they are given by (essentially) the same formula.

When we think of functions as given by formulas, it is not always necessary to
know the domain and codomain(range) of a function. Consider for instance the
function f(x) = x. This is, of course, the identity function. We may regard it as a
function f : X → X for any set X.

In most of cases, the “functions as graphs”paradigm is the most elegant and
appropriate way of dealing with functions. Graphs define a more general class of
functions, because it includes functions that are not necessarily given by a rule.
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In computer science, the “functions as rules”paradigm is often more appropriate.
Think of a computer program as defining a function that maps input to output. Most
computer programmers (and users) do not only care about the extensional behavior
of a program (which inputs are mapped to which outputs), but also about how the
output is calculated: How much time does it take? How much memory and disk
space is used in the process? How much communication bandwidth is used? These
are intensional questions having to do with the particular way in which a function
was defined.

2 Reduction and functional programming

A functional program consists of an expression E (representing both the algorithm
and the input). This expression E is subject to some rewrite rules. Reduction
consists of replacing a part P of E by another expression P according to the given
rewrite rules. In schematic notation

E[P ] → E[P ′],

provided that P → P ′ is according to the rules. This process of reduction will be
repeated until the resulting expression has no more parts that can be rewritten. This
so called normal form E∗ of the expression E, consists of the output of the given
functional program. An example is as given below.

(7 + 4) ∗ (8 + 5 ∗ 3) → 11 ∗ (8 + 5 ∗ 3)

→ 11 ∗ (8 + 15)

→ 11 ∗ 23

→ 253

In this example the reduction rules consist of the ’tables’ of addition and of mul-
tiplication on the numerals. Also symbolic computations can be done by reduction.
For example

first of (sort (append (‘dog’, ‘rabbit’) (sort ((‘mouse’, ‘cat’))))) →
→ first of (sort (append (‘dog’, ‘rabbit’) (‘cat’, ‘mouse’)))
→ first of (sort (‘dog’, ‘rabbit’, ‘cat’, ‘mouse’))
→ first of (‘cat’, ‘dog’, ‘mouse’, ‘rabbit’)
→ ‘cat’.

The necessary rewrite rules for append and sort can be programmed easily in a
few lines. Functions like append given by some rewrite rules are called combinators.

Reduction systems usually satisfy the Church-Rosser property, which states that
the normal form obtained is independent of the order of evaluation of subterms.
Indeed, the first example may be reduced as follows:



(7 + 4) ∗ (8 + 5 ∗ 3) → (7 + 4) ∗ (8 + 15)

→ 11 ∗ (8 + 15)

→ 11 ∗ 23

→ 253

or even by evaluating several expressions at the same time:

(7 + 4) ∗ (8 + 5 ∗ 3) → 11 ∗ (8 + 15)

→ 11 ∗ 23

→ 253.

3 Lambda Calculus

The lambda calculus is a theory of functions as formulas. It is a system for ma-
nipulating functions as expressions. Let us begin by looking at another well-known
language of expressions, namely arithmetic. Arithmetic expressions are made up
from variables (x, y, z, . . . ), numbers (1, 2, 3, . . . ), and operators {+,−,×} etc. An
expression such as x + y stands for the result of an addition (as opposed to an
instruction to add, or the statement that something is being added).

The great advantage of this language is that expressions can be nested without
any need to mention the intermediate results explicitly. So for instance, we write

A = (x+ y)× z2,

and not the following:
let w = x+ y, then let u = z2, then let A = w × u.
The latter notation would be tiring and cumbersome to manipulate. The lambda

calculus extends the idea of an expression language to include functions. Where we
normally write

A = (λx.x2)(5).

The expression λx.x2 stands for the function that maps x to x2 (as opposed to
the statement that x is being mapped to x2). As in arithmetic, we use parentheses
to group terms. It is understood that the variable x is a local variable in the term
λx.x2. Thus, it does not make any difference if we write λy.y2 instead. A local
variable is also called a bound variable.



3.1 Application and abstraction

The first basic operation of the λ-calculus is application. The expression F.A or
FA denotes the data F considered as algorithm applied to the data A considered as
input. This can be viewed in two ways: either as the process of computation FA or
as the output of this process. The first view is captured by the notion of conversion
and even better of reduction; the second by the notion of models (semantics).

The theory is type-free: it is allowed to consider expressions like FF , that is F
applied to itself. This will be useful to simulate recursion. The other basic operation
is abstraction. If M ≡ M [x] is an expression containing (’depending on’) x, then
λx.M [x] denotes the function x → M [x].

Application and abstraction work together in the following intuitive formula.

(λx.2 ∗ x+ 1)3 → 2 ∗ 3 + 1

→ 7.

That is, (λx.2∗x+1)3 denotes the function x → 2∗x+1 applied to the argument
3 giving 2 ∗ 3 + 1 which is 7. In general we have

(λx.M [x])N = M [N ].

This last equation is preferably written as

(λx.M)N = M [x := N ]

where [x := N ] denotes substitution of N for x. It is remarkable that although
above is the only essential axiom of the λ-calculus, the resulting theory is rather
involved.

3.2 Composition of Functions

One advantage of the lambda notation is that it allows us to easily talk about
higher-order functions, i.e., functions whose inputs and/or outputs are themselves
functions. An example is the operation f → f ◦ f in mathematics, which takes a
function f and maps it to f ◦ f , the composition of f with itself. In the lambda
calculus, f ◦ f is written as

λx.f(f(x)),

and the operation that maps f to f ◦ f is written as

λf.λx.f(f(x)).

The evaluation of higher-order functions can get somewhat complex; as an ex-
ample, consider the following expression:



((λf.λx.f(f(x)))(λy.y2))(5)

Convince yourself that this evaluates to 625. Another example is given in the
following exercise.

3.3 Functions of more arguments

Functions of several arguments can be obtained by iteration of application. Intu-
itively, if f(x, y) depends on two arguments, one can define

Fx = λy.f(x, y),

F = λx.Fx.

Then

(Fx)y = Fxy = f(x, y).

This last equation shows that it is convenient to use association to the left for
iterated application: FM1 . . .Mn denotes

(. . . ((FM1)M2) . . .Mn).

The equation above becomes

Fxy = f(x, y).

Dually, iterated abstraction uses association to the right: λx1 . . . xn.f(x1, . . . , xn)
denotes

λx1.(λx2.(. . . (λxn.f(x1, . . . , xn)))).

4 Lambda Calculus and Computability

In the 1930’s, several people were interested in the question: what does it mean for
a function f : N → N to be computable? An informal definition of computability
is that there should be a pencil-and-paper method allowing a trained person to
calculate f(n), for any given n. The concept of a pencil-and-paper method is not so
easy to formalize. Three different researchers attempted to do so, resulting in the
following definitions of computability:

1. Turing defined an idealized computer we now call a Turing machine, and pos-
tulated that a function is computable (in the intuitive sense) if and only if it
can be computed by such a machine.



2. Godel defined the class of general recursive functions as the smallest set of
functions containing all the constant functions, the successor function, and
closed under certain operations (such as compositions and recursion). He pos-
tulated that a function is computable (in the intuitive sense) if and only if it
is general recursive.

3. Church defined an idealized programming language called the lambda calculus,
and postulated that a function is computable (in the intuitive sense) if and

only if it can be written as a lambda term.

It was proved by Church, Kleene, and Turing that all three computational mod-
els were equivalent to each other, i.e., each model defines the same class of com-
putable functions. Whether or not they are equivalent to the “intuitive”notion of
computability is a question that cannot be answered, because there is no formal def-
inition of “intuitive computability”. The assertion that they are in fact equivalent
to intuitive computability is known as the Church-Turing thesis.

5 Connections to computer science

The lambda calculus is a very idealized programming language; arguably, it is the
simplest possible programming language that is Turing complete. Because of its
simplicity, it is a useful tool for defining and proving properties of programs. Many
real-world programming languages can be regarded as extensions of the lambda
calculus. This is true for all functional programming languages, a class that includes
Lisp, Scheme, Haskell, and ML(Meta Language). These languages combine the
lambda calculus with additional features, such as data types, input/output, side
effects, udpateable memory, object orientated features, etc. The lambda calculus
provides a vehicle for studying such extensions, in isolation and jointly, to see how
they will affect each other, and to prove properties of programming language (such
as: a well-formed program will not crash).

The lambda calculus is also a tool used in compiler construction.


