
CSME 206A – Natural Language & Speech Processing Spring Semester

Lecture 12: Tokenization and Parts of Speech Tagging

Lecturer: K.R. Chowdhary : Professor of CS

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications.

They may be distributed outside this class only with the permission of the Instructor.

12.1 Introduction

Part-of-speech (POS) tagging is the foundation of many natural language processing applications. Rule-
based POS tagging is a well-known solution, which assigns tags to the words using a set of pre-defined rules.
Many researchers favor statistical-based approaches over rule-based methods for better empirical accuracy.
However, until now, the computational cost of rule-based POS tagging has made it difficult to study whether
more complex rules or larger rule-sets could lead to accuracy competitive with statistical approaches.

In one approach, two hardware accelerators have been used, the Automata Processor (AP) and Field Pro-
grammable Gate Arrays (FPGA), to accelerate rule-based POS tagging by converting rules to regular ex-
pressions and exploiting the highly-parallel regular-expression-matching ability of these accelerators. The
relationship between rule set size and accuracy has been studied, and it is observed that adding more rules
only poses minimal overhead on the AP and FPGA. This allows a substantial increase in the number and
complexity of rules, leading to accuracy improvement.

What tagging models are most appropriate as front ends for probabilistic context-free grammar parsers? In
particular, we ask if using a “multiple tagger”, a tagger that returns more than one tag, improves parsing
performance. The conclusion obtained is somewhat surprising: single-tag Markov-model taggers are quite
adequate for the task. First of all, parsing accuracy, as measured by the correct assignment of parts of
speech to words, does not increase significantly when parsers select the tags themselves. In addition, the
work required to parse a sentence goes up with increasing tag ambiguity, though not as much as one might
expect. Thus, for the moment, single taggers are the best taggers.

Recent years have seen a spate of research on various techniques for “tagging”- assigning a part of speech
(or “tag”) to each word in a text.

As we are living in the era of big-data and mobile computing, effective and efficient natural language process-
ing (NLP) applications become increasingly important, and they greatly affect the quality of human-computer
interaction (HCI). The most efficient and high-quality NLP applications use extensive, time-consuming sta-
tistical or neural-network models, which make them infeasible for real-time applications.

A part-of-speech tagger assigns part-of-speech tags (e.g., noun, verb) to words in a sentence. POS tagging
is a building block for a wide range of NLP tasks. For example, in parsing, words’ parts of speech determine
proper word combinations; in named-entity resolution, it identifies the entities and the relationships between
them; and in detecting sentiment contrasts, some words could have differing sentiments in different parts of
speech. Moreover, in software engineering, POS tagging helps in recognizing essential words from software
artifacts such as bug reports. Generally in NLP, and specifically in POS tagging, statistical and neural
network (NN)-based approaches have been favored over rule-based approaches, because they have shown
higher accuracy and the training is straightforward to automate, while early rule- based tagging required

12-1

12-2 Lecture 12: Tokenization and Parts of Speech Tagging

Table 12.1: A sentence tagged with multiple tags
The can will rust
article modal-verb modal-verb noun

noun noun verb

verb verb

manual rule generation and execution time increased linearly with the number of rules. This limits the
number of rules, thus limiting accuracy. However, rules can now be learned automatically and incorporate
textual information (i.e., surrounding tags and words).

One justification for tagging research is that a tagger can serve as a front end to a parser: the tagger assigns
the tags to the incoming words and thus the parser can work at the tag level, where parsers do best. This
raises questions of how well different types of taggers work as front ends to parsers. Despite the abundance
of work on taggers, these questions have yet to be addressed; it is still uncommon actually to read of a tagger
used with a parser, and when one is so used there is no analysis of suitability.

This question becomes more important because of two strands within tagging research. While most taggers
return a single best tag for each word (we call these “single taggers”). Some work has been done on taggers
that return a list of possible tags in those cases where a second (or even third) best choice might be close to
the best according to the tagger’s metric (we call these “multiple taggers”). One obvious reason to do this
would be to let the parser make the final decision.

12.2 Tokenization

The linguistic annotation of naturally occurring text can be seen as a progression of transformations of
the original text, with each step abstracting away surface differences. For natural language processing, the
tokenization is usually the first step of this type of transformation. To a computer, the text is just a long string
of characters; the tokenization means dividing up the input text, into subunits, called tokens. These tokens
are then fed into subsequent natural language processing tasks such as morphological analysis, part-of-speech
tagging, and parsing. Since these subsequent treatments are usually designed to work on individual sentences,
a subsidiary task of tokenization is often to identify sentence boundaries as well as token boundaries. Though
rarely discussed, and quickly dismissed tokenization in an automated text processing system posses a number
of questions, while only few of them have completely perfect answers.

In true sense, the tokenization is not the first step in the abstraction process. If we look at an HTML
(hypertext markup language) text, original document has typesetting distinctions (e.g. font size, font style,
page layout, pictures and graphics), but these are filtered out and only the text is sent as output, and from
that tokens are generated.

It is not that the typeset features are not important, which can be exploited by the machine, but these
variety of features make it difficult for any general processing system to take them into account. Thus,
input to a tokenizer is a stream of characters which consists of graphic tokens separated by layout (after
the previous step probably only space and newline characters) and possibly enhanced by markup symbols.
Unfortunately, the graphic tokens, usually defined as anything between two layout symbols, need not coincide
with the linguistic tokens.

The tokenization process depends strongly on the type of text which is being processed, so that an analysis of
the tokenization problems in the specific type of text must be done (with ways of checking the separator/non
separator status of characters).

Lecture 12: Tokenization and Parts of Speech Tagging 12-3

The tokenization is associated with lower or upper level processes. Even if there exists a tendency to
gather both tasks under the vague label: “pre-processing”, tokenization differs nevertheless from preliminary
“cleaning procedures” such as:

• removing useless tags remaining from type-setting of the text, like, HTML, MS-Word, Tex, newspaper
archives, etc;

• taking away “non-textual” items such as horizontal line and page-break tags in documents, or in
electronic mail smileys – :-) or :-(– and quotation representation;

• eliminating parts which do not belong to natural languages: mathematical or chemical formulae, and
programs codes.

However, the borderline is thin between the cleaning task vs tokenization, as some times it becomes diffi-
cult to resolve whether it is part of tokenization or of cleaning (filtering). In addition, there is additional
preprocessing needed that is associated with segmenting a word into word units, acronym (NY, POS) and
abbreviation (vb) recognition, hyphenation checking, number standardization, etc. Some tokenizers include
even the delimitation of textual units such as sentences, paragraphs, notes, and so on. Because of this lack
of consensus on a definition, in the sequel, we should prefer to use a broader definition of tokenization, that
includes various treatments which have mentioned above.

There are Tools available, e.g., NLTK (Natural Language Tool Kit), in Python language, that can perform
tokenization, where a token is sentence or word. The following example demonstrates this.

Example 1 Tokenization of natural language text.

The following commands in Python, with NLP tool NLTK installed, demonstrates the tokenization of a
given text into sentence tokens, and word tokens. Since there is only one sentence, the sentence token is one
only.

$ python

Python 3.7.6 (default, Jan 8 2020, 19:59:22)

[GCC 7.3.0]:: Anaconda, Inc. on linux

Type "help", "copyright", "credits" or "license" for more

information.

>>> from nltk.tokenize import sent_tokenize, word_tokenize

>>> text="Natural Language and Speech Processing."

>>> print(sent_tokenize(text))

[’Natural Language and Speech Processing.’]

>>> print(word_tokenize(text))

[’Natural’, ’Language’, ’and’, ’Speech’, ’Processing’, ’.’]

>>>

So far, tokenization did not constitute an issue as such: in fact pre-processing was not considered as part of
NLP. There are two factors for renewed interest in tokenization techniques. First, as far as NLP is concerned,
the scale has changed. On one hand, very large corpora are being gathered, either for linguistic purpose
(lexicography and grammar writing) or for NLP method tuning. For example, British National Corpus,
which comprises 100 millions of tagged words. The corresponding documents were to be processed in order
for the tagging to be possible. On the other hand, search engines regularly scan thousands of pages on
the WEB in order to build and update efficient indexes. Their precision and recall results depend on their

12-4 Lecture 12: Tokenization and Parts of Speech Tagging

capacities for normalizing “on the fly”. Knowledge acquisition from freely occurring texts imply selective
dissemination of information as well as processing very large streams of characters (for instance, the issue
the issue of the daily paper Le Monde represent about 20 millions of words per year). This requires the
tokenization to be accurate and robust.

For the purpose of evaluation of the technique used for tokenization, the data set is divided into a training

set and a test set. An evaluation methodology is associated, providing targets and measures. It works fine
for domains within which there can be a reasonable agreement on what constitutes an acceptable answer for
a given input. It is the case for machine-translation, as human translation provides a touch-stone, and for
document retrieval, as there is a whole tradition of indexing and ranking. It is already more difficult to rely
on this approach for morpho-syntactic tagging, as it is hard to reach an agreement on a standard. It is even
worse for parsing. It should not be surprising therefore that tokenization does not seem to be amenable to
this type of evaluation. Even if a working definition could be reached, the task of segmenting manually some
data in order to build test data does not constitute a realistic aim.

12.3 Stemming

Example 2 Stemming of given set of words.

Following are the commands for stemming a set of word to reduce them to their stem words. This makes
use of Porter Stemmer algorithm.

>>> from nltk.stem import PorterStemmer

>>> ps=PorterStemmer()

>>> words=["python", "pythoning", "pythonize", "pythonly"]

>>> for w in words: print(ps.stem(w))

...

python

python

python

pythonli

>>>

�

12.4 Taggers

Part-of-speech-tagging is the process of assigning parts of speech, such as noun, verb, etc., to each word.
It has a wide range of applications in parsing, text-to-speech conversion, named entity resolution, machine
translation, etc. POS tagging is generally categorized as a rule-based, statistical-based, or neural network-

based model.

Most taggers are of statistical nature, which requires a tagged corpus – a text or a set of texts in which
every word has been assigned its correct tag by hand. The tagged corpus is then divided two disjoint sets, a
large set used for “training” – collecting the statistics needed by the tagger – and a small set for “testing”
– determining how well the tagger can find the correct tag sequence.

Lecture 12: Tokenization and Parts of Speech Tagging 12-5

Input to a tagging algorithm are: a string of words and a tag-set, and output is single best tag for each word
(see Fig. 12.1).

POS TaggerStream of
words

Tag-set

Each word

from Corpus

with best tag

Figure 12.1: Process of Tagging

In rule-based methods, tags are assigned based on rules that embody repeatable patterns indicating a specific
tag, and in statistical methods, tags are assigned based on a probability model.

The statistical taggers are basically three types:

Simple Tagger One approach for statistically based tagger is, the traditional simple tagger. This kind of
tagger returns the tag sequence t1,n by maximizing P (t1,n | w1,n), where w1,n is a sequence of n words, and
t1,n are corresponding n tags. In other words, for a sentence of length n, the tagger tries to find the tag
sequence t1,n, that has the highest probability given the words of the sentence w1,n. This sequence is found
using Markov-model Viterbi Algorithm.

Multiple tags for a word Second approach of building a tagger is to compute P (ti | w1,n) for each tag.
This differs from the earlier method in the sense that, the first method finds a tag sequence for the entire
sentence, i.e., “all at once”, where as the second method looks at each position in the sentence and computes
the probability for each possible tag for that word. This tagger is better if one wants to find multiple tags
for a given word. For example, given the sentence, “The can will rust”, the tagger computes the probability
that “will” is noun1, that it is a modal. Thus, we not only know just most probable part of speech, but also
the second most probable, etc. We shall also know how much is the difference between the first choice and
the second, second and the third, and so on. So, while the first tagger returns what it considers the best over
all tag sequence, the second tagger can identify alternative tags at a location with tag probabilities close to
the best.

All Tagger The third approach can be one that returns all tags with non-zero probabilities for each word.
For example, for “will”, it may return “model-verb”, “noun”, etc.

All the above mentioned taggers share the same probabilistic model, that is, same way of computing the
probabilities of tag sequences given the word sequences. The model is based on the reasonably standard
bigram tagging model :

argmaxt1,n

n∏

i=1

P (wi | ti) ∗ P (ti | ti−1). (12.1)

Here argmaxt1,n says to find the tag sequence t1,n that maximizes the quantity that follows. Within the
product, for each tag ti we compute the product P (wi | ti) ∗ P (ti | ti−1). The first of these, i.e., P (wi | ti),

1For example, “will document” to transfer the rights of some property.

12-6 Lecture 12: Tokenization and Parts of Speech Tagging

is again called word model, in that it causes the tagger to prefer tags that are common for the word wi. The
second term P (ti | ti−1), is called tag-context model, it tends to make the tagger prefer tags that are likely
to come after the tag for the previous word.

It is responsibility of training phase to collect these two kinds of probabilities. However, the common problem
in statistical tagger is that set of examples found in the training data is not exhaustive, due to this in the
text data, the tagger encounters unforeseen situations. A typical case is, when the tagger encounters a word
it has not seen earlier. In this case P (wi | ti), is zero for all possible tags and the tagger “blows-up”. A
solution to the problem is to “smooth” the data collected in the training phase so that these situations do
not carry forward zero probabilities, but may have some low probabilities, possibly, based on some kind of
auxiliary evidence. An example of this is Brown Corpus.

