
CSME 206A Natural language & Speech Processing Spring Semester

Lecture 5: Finite Automata and Morphological Parsing

Lecturer: K.R. Chowdhary : Professor of CS

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications.
They may be distributed outside this class only with the permission of the lecturer.

5.1 Introduction

Finite-state machines have been extensively used in areas of speech processing. Their use can be justified
by both linguistic and computational purpose. In linguistics, finite automata are convenient as they allow
one to describe easily most of the relevant local phenomena encountered in the empirical study of language.
They often lead to a compact representation of lexical rules, or idioms and cliches, that appears natural
to linguists. Graphic tools also allow one to visualize and modify automata, which helps in correcting and
completing a grammar. Other more general phenomena, such as parsing context-free grammars, can also be
dealt with using finite-state machines. In fact, the underlying mechanisms in most of the methods used in
parsing are related to automata.

From the computational point of view, the use of finite-state machines is mainly motivated by considerations
of time and space efficiency. Time efficiency is usually achieved using deterministic automata. The output of
deterministic machines depends, in general linearly, only on the input size and can therefore be considered of
optimal time complexity. Space efficiency is achieved with classical minimization algorithms. Applications
such as compiler construction have shown deterministic finite automata to be very efficient in practice.

The recent applications of finite automata in natural language processing are, ranging from the construction
of lexical analyzers and the compilation of morphological and phonological rules, to speech processing.

In this chapter we will discuss theoretical and algorithmic bases for the use and application of the devices
based on FA, that support very efficient programs: the . The idea of deterministic automata is extended to
transducers with deterministic input, so that these machines produce output strings or weights in addition
to (deterministically) accepting input. Hence, these methods are consistent with the initial reasons for us-
ing finite-state machines – the time efficiency of deterministic machines, and the space efficiency achievable
through minimization algorithms, for sequential transducers.

Both time and space efficiency are important when dealing with languages. Indeed, one of the recent trends
in language studies is a large increase in the size of data sets. Lexical approaches have been shown to be
the most appropriate in many areas of computational linguistics ranging from large-scale dictionaries in
morphology to large lexical grammars in syntax. The effect of the size increase on time and space efficiency
is probably the main computational problem of language processing.

The sequential finite-state transducers are used in all areas of computational linguistics. In the following
sections, we will discuss in details these devices. We will first consider string-to-string transducers, which
have been successfully used in the representation of large-scale dictionaries, computational morphology, and
local grammars and syntax, and describe the theoretical bases for their use. In particular, we recall classical
theorems and provide some new ones characterizing these transducers.

5-1

5-2 Lecture 5: Finite Automata and Morphological Parsing

We then consider the case of sequential string-to-weight transducers. Language models, phone lattices, and
word lattices are among the objects that can be represented by these transducers, making them interesting
from the point of view of speech processing.

In the last section, we describe some applications of determinization and minimization of string-to-weight
transducers in speech recognition, illustrating them with several results that show them to be very efficient.
The implementation of the determinization is such that it can be used on the fly: only the necessary part
of the transducer needs to be expanded. This plays an important role in the space and time efficiency of
speech recognition. The reduction in the size of word lattices that these algorithms provide sheds new light
on the complexity of the networks involved in speech processing.

5.2 Finite Automata

The finite automata are the machines which recognize regular languages, i.e, languages represented by regular
expressions (RE). Hence, there is relation of implication like this, FA → REGLANG → RExp → FA, in
other words, it is a bijection between all three entities. Let us consider that, talk or sound of a sheep (sheep-
talk language S) can be represented by strings S = {baa!, baaa!, baaa!, ...},. Where each sentence in language
is dependent on the length of ’a’ sound. The set of strings S can be represented by a regular expression:
baa+!. However, we will prefer it to be represented by a string /baa+!/ – a format of pronunciation. The
sounds in set S can be recognized by a FA shown in the Fig. 5.1.

q0 q1 q2 q3 q4

b a a

a

!

b a a a !

Transition diagram of FA

Finite automata

Finite control

tape

Read Head motion

Figure 5.1: Finite Automata.

Formally, a FA is represented by M = (Q,Σ, q0, δ, F), where

Q is finite set of states; here Q = {q0, q1, q2, q3, q4}

Σ is finite set of alphabets; here Σ = {a, b, !}

δ is transition function; i.e., δ : Q× Σ→ Q,

F is set of finite states, called accepting or final states, and here, F = {q4},

S = L(M) = {baa!, baaa!, baaaa!, . . .}.

The recognition process for the language string through FA, is represented by the algorithm 1. For this,
the FA’s tape is divided into squares, called index positions, where each position is holding one symbol from
alphabet Σ. We consider that w is input string, and |w| = n is length of input [Jurafskyd].

The recognition of a string by FA is searching a tree. Considering the recognition of some string, say length
n, for alphabet set Σ = {a, b}, one needs to perform a worst case search of O(2n) in space and time. The

Lecture 5: Finite Automata and Morphological Parsing 5-3

Algorithm 1 : function dfa-recognize(tape, machine) return accept / reject;

1: index← initial-position-on-tape
2: while True do

3: if end of input then
4: if current state== accept then
5: return accept
6: else

7: return reject
8: end if

9: else

10: if transition-table[current-state, tape[index]] == empty then

11: return reject
12: else

13: current-state ← transition-table[current-state, tape[index]]
14: index++
15: end if

16: end if

17: end while

time complexity remains O(2n) for both the BFS as well as DFS. In general, if size of alphabet |Σ| = m,
and length of string (sentence) is n, then space and time both have complexities equal O(mn), for BFS.

However, in case of DFS, space complexity is O(2 × n), for branching factor (b = 2) and length of string n.
As a general case, it is O(mn). However, due to combinatorial explosion of number of states generated, even
shorter length strings, makes it difficult to efficiently process the input for recognition. Since, the ordinary
brute force algorithms, like DFS and BFS are highly inefficient, better algorithms like best-first search, A∗,
and SA (simulated annealing) are considered superior.

25

height=5

a b

b

b

b
b

b

aa

a a

a

= bbbbb

= ab

Figure 5.2: Search-tree.

5.3 Finite state transducers

A finite state transducer (FST) is a finite state machine with two tapes: an input tape and an output tape,
with finite number of states. The Fig. 5.3 shows the diagram where these (input and output) strings are
shown on the transitions, separated by “:”. This FST has been used as a translator, as it translates the
input sentence “” Hello World” to “Hey there krc”.

Thus, an FST is a directed graph, like finite automata, with,

5-4 Lecture 5: Finite Automata and Morphological Parsing

0 1 2 3
Hello:Hey ε:there World:krc

Figure 5.3: An FST as a translator

• Edges / transitions that have input / output labels,

• some times there are empty labels indicated by ε,

• Traversing through to the end of an FST implies the translation of one string into another, or generation
of two strings, or relating one string to another,

• There is a defined state, called “start” state, and other ass “final” state.

We define here, the FST as Mealy machine, which is an extension of normal finite state (FS) machine. The
formal representation of Mealy machine is given by,

M = (Q,Σ, q0, δ, F) (5.1)

where,

Q = {q0, q1, . . . , qN−1}, is finite set of states,

Σ is finite alphabet of complex symbols, and

Σ ⊆ I ×O,

q0 is start state,

δ : Q× Σ→ Q, for example, δ(q′, i : o) = qj .

The I and O are input and output symbols, respectively, and both include the symbol ε. For Σ = {a, b, !},
corresponding to the language discussed earlier, the FST has i : o set as, {a:a, b:b, !:!, a:!, a:ε, ε:!}.

The FSTs are useful for variety of applications:

• Word inflections: For example, finding the plural of the words, cat → cats, dog → dogs, goose →
geese, etc.

• Morphological parsing: Extracting the properties of a word, e.g., cats → cat + [nouns] + [plural].

• Simple word translations: For example, US English to UK English.

• Simple commands to computer.

5.4 Sequential and P-subsequential Transducers

Sequential string-to-string transducers are used in various areas of natural language processing. Both deter-
minization and minimization algorithms are used for the class of p-subsequential transducers (p ≥ 1), which

Lecture 5: Finite Automata and Morphological Parsing 5-5

includes sequential string-to-string transducers1. In this section, the theoretical basis of the use of sequential
transducers is described. A lot of theoretical base exists for using these devices for applications to natural
language processing.

q0 q1

a : b

b : b

a : ba

b : ε

Figure 5.4: Sequential Transducer.

A sequential transducers is a transducers with deterministic input. At any state of such transducers, at
most one outgoing arc is labeled with a given element of the alphabet. Fig. 5.4 shows an example of a
sequential-transducer. Note that output labels might also include the empty string (ε). However, an empty
string is not allowed on input. The output of a sequential transducer is not necessarily to be deterministic.
For example in Fig. 5.4, where two distinct arcs with output labels b leave the state q0. The Sequential
transducers are computationally efficient because their use with a given input does not depend on the size of
the transducer but only on the size of the input. Using a sequential transducer with a given input consists
of following the only path corresponding to the input string and in writing consecutive output labels along
this path. Hence, the total computational time is linear in the size of the input, provided that the cost of
copying out each output label does not depend on its length.

Definition 5.1 String-to-string Transducer. A sequential string-to-string transducer T is a 7-tuple
(Q, q0, F,Σ,∆, δ, σ), where,

Q is set of states,

q0 is initial state,

F ⊆ Q is set of final states,

Σ is set of input alphabet,

∆ is set of output alphabet,

δ is state transition function, δ : Q× Σ→ Q, and

σ is output function, σ : Q× Σ→ ∆∗.

The functions δ and σ are generally partial functions, i.e., a state q ∈ Q does not necessarily admit outgoing
transitions labeled on the input side with all elements of the alphabet. These functions can be extended to
mappings from Q× Σ∗ by the following classical recurrence relations:

∀s ∈ Q, ∀w ∈ Σ∗, ∀a ∈ Σ, there is, δ(s, ε) =s, δ(s, wa) = δ(δ(s, w), a); and

σ(s, ε) =ε, σ(s, wa) = σ(s, w)σ(δ(s, w), a). (5.2)

Thus, a string w ∈ Σ∗ is accepted by Transducer T iff δ(q0, w) ∈ F , and in that case the output of the
transducer is σ(q0, w).

1Here P stands for number of strings which are handled in parallel. At the minimum, a transducer handles one input string,
and one output string, thus, the most common case is p = 2.

5-6 Lecture 5: Finite Automata and Morphological Parsing

Resolving ambiguity The Sequential transducers discussed above can be generalized by introducing the
possibility of generating an additional output string at final states. The application of the transducer to a
string can then possibly finish with the concatenation of such an output string to the usual output. Such
transducers are called sub-sequential transducers.

The language processing applications often require more general extensions due to ambiguities. For example,
the ambiguities encountered in language, like, ambiguities of grammars, morphological analyzers, and of
pronunciation dictionaries, cannot be taken into account when using sequential or subsequential transducers.
These devices associate at most a single output to a given input. In order to deal with ambiguities, one can
introduce p-subsequential transducers, namely transducers provided with at most p final output strings at
each final state (here p ≥ 2). Fig. 5.5 gives an example of a 2-subsequential transducer. Here, the input
string w = ba, gives two distinct outputs aba and abb. Since one cannot find any reasonable case in language
in which the number of ambiguities would be infinite, p-subsequential transducers appears to be sufficient
for describing linguistic ambiguities. However, the number of ambiguities could be very large in some cases.
Note that 1-subsequential transducers are exactly the subsequential transducers [Mohrimeh].

q0

a
b : a

a : a

a : b

a : a

q1

b
q3

q2

Figure 5.5: P -Subsequential Transducer (P = 2).

Composing of P-subsequential Transducers We know that transducers are devices that represent
mappings from strings to strings. As such, they admit the composition operation defined for mappings,
using which one can construct more complex transducers from simpler ones.

Consider that there are two transducers τ1 and τ2, such that these are in sequential order, first τ1 and then
τ2, i.e., an input string s is applied to τ1, and the output of that goes as input to τ2. As a result of the
application of τ2 ◦ τ1, the string s can be computed by first considering all output strings associated with the
input s in the transducer τ1, then applying τ2 to all of these strings. The output strings obtained after this
application represent the result (τ2 ◦ τ1)(s). In fact, instead of waiting for the result of the application of
τ1 to be completely given, one can gradually apply τ2 to the output strings of τ1 yet to be completed. This
is the basic idea of the composition algorithm, which allows the construction of a single transducer τ2 ◦ τ1
given transducers τ1 and τ2, and input s is applied to that transducer. That way, τ1 and τ2 will both be
processing their input in parallel at different stages.

5.5 p-Subsequential transducers for Language processing

In the above, we have briefly mentioned some of the theoretical and computational properties of sequential
and p-subsequential transducers. These devices are used in many areas of computational linguistics, where
determinization algorithm can be used to obtain a p-subsequential transducer, and a minimization algorithm
to reduce the size of the p-subsequential transducer used. The algorithms for subsequential transducers that
perform composition, union, and equivalence are also useful in many applications. Following are some of the
applications in computational linguistics.

Finite-state transducers are automata in which transitions are labeled with both an input and an output

Lecture 5: Finite Automata and Morphological Parsing 5-7

symbol. Transducers have been used successfully to create complex systems in many applications such as
text and language processing, speech recognition and image processing. The time efficiency of such systems is
substantially increased when subsequential transducers, i.e. finite-state transducers with deterministic input,
are used. Subsequential machines can be generalized to p-subsequential transducers which are transducers
with deterministic input with p, (p ≥ 1), final output strings. This generalization is necessary in many
applications such as language processing to account for finite ambiguities.

Not all transducers admit equivalent p-subsequential transducers however. We will discuss the charac-
terization of p-subsequentiable transducers, i.e. transducers that admit equivalent p-subsequential trans-
ducers. This characterization is based on the twins property and leads to an efficient algorithm for test-
ing p-subsequentiability. More generally, our results show the equivalence of the following three funda-
mental properties for finite-state transducers: determinizability in the sense of a generalized algorithm,
p-subsequentiability, and the twins property.

This can also be viewed as a generalization of the results known in the case of functional transducers:
determinizable functional transducers are exactly those that admit equivalent subsequential transducers.
We generalize these results by relaxing the condition on functionality: determinizable transducers are ex-
actly those that admit equivalent p-subsequential transducers and exactly those that admit the twins prop-
erty [cyrmehry].

5.5.1 Representation of Dictionaries

Very large-scale dictionaries can be represented using p-subsequential transducers because the number of
entries and that of the ambiguities they contain are finite. The corresponding representation offers fast
look-up since the recognition does not depend on the size of the dictionary but only on that of the input
string considered. The minimization algorithm for sequential and p-subsequential transducers allows the size
of these devices to be reduced to the minimum. Experiments have shown that compact and fast look-up
representations for large natural language dictionaries can be efficiently obtained.

5.5.2 Compilation of Morphological and Phonological Rules

Similar to dictionaries, context-dependent phonological and morphological rules can be represented by finite-
state transducers. Most phonological and morphological rules correspond to p-subsequential functions. Of-
ten, the result of the computation is not necessarily a p-subsequential transducer, but it can often be deter-
mined using the determinization algorithm for p-subsequentiable transducers. This considerably increases
the time efficiency of the transducer. It can be further minimized to reduce its size. These observations can
be extended to the case of weighted rewrite rules.

5.5.3 Syntax

Finite-state machines are also commonly used to represent local syntactic constraints. Linguists can con-
veniently introduce local grammar transducers that can be used to disambiguate sentences. The number
of local grammars for a given language and even for a specific domain can be large. The local grammar
transducers are mostly p-subsequential. The determinization and minimization can then be used to make
the use of local grammar transducers more time efficient and to reduce their size. Since p-subsequential
transducers are closed under composition, the result of the composition of all local grammar transducers is
a p-subsequential transducer. The equivalence of local grammars can also be tested using the equivalence
algorithm for sequential transducers.

5-8 Lecture 5: Finite Automata and Morphological Parsing

Because the sequential transducers are so time and space efficient, they are being used increasingly in natural
language processing as well as in other connected fields. In the following, we consider the case of string-to-
weight transducers.

5.6 Formal representation of Subsequential String-to-Weight Trans-

ducers

We will consider string-to-weight transducers, i.e., transducers with input strings and output as weights.
These transducers are used in domains, such as language modeling, representation of word, or phonetic
lattices, etc [Mohrimeh02]. The usages can be done in the following way: one reads and follows a path in
a directed graph corresponding to a given input string and outputs a number obtained by combining the
weights along this path. In most applications to natural language processing, the weights are simply added
along the path, since they are interpreted as (negative) logarithms of probabilities. In case the transducer is
not sequential, that is, when it does not have a deterministic input, one proceeds in the same way for all the
paths corresponding to the input string. In natural language processing, specifically in speech processing, one
keeps the minimum of the weights associated to these paths. This corresponds to the Viterbi approximation
in speech recognition or in other related areas for which hidden Markov models (HMM’s) are used. In all
such applications, one looks for the best path, i.e., the path with the minimum weight [Mohrimeh02].

In addition to the output weights of the transitions, string-to-weight transducers are provided with initial
and final weights. For instance, when used with the input string ab, the transducer in Fig. 5.6 outputs:
4 + 2 + 3 + 7 = 16, the 4 being the initial and 7 the final weight. For string b, the output is 4 + 6 + 7 = 17.

a/2 b/3
q1

q0/4 b/6 q2/7

Figure 5.6: Sample Sequential string-to-weight Transducer.

Definition 5.2 String-to-weight transducer. A string-to-weight transducer T is defined by T = (Q,Σ, I, F, E, λ, ρ)
with:

Q a finite set of states,

G the input alphabet,

I ⊆ Q the set of initial states,

F ⊆ Q the set of final states,

E ⊆ Q× Σ× R+ ×Q a finite set of transitions,

λ the initial weight function mapping input I to set of output weights R+, and

ρ the final weight function mapping set of final states F to R+.

For the transducer T , a transition (partial) function δ : Q× Σ→ 2Q can be defined as:

Lecture 5: Finite Automata and Morphological Parsing 5-9

∀(q, a) ∈ Q× Σ, δ(q, a) = {q′ | ∃x ∈ R+ : (q, a, x, q′) ∈ E}

and an output function σ : E → R+ can be defined as:

∀t = (p, a, x, q) ∈ E, σ(t) = x

where ∀t stands for ”for all transitions t.

A path π in T from q ∈ Q to q′ ∈ Q is a set of successive transitions from q to q′, given as:

π = ((q0, a0, x0, q1), ..., (qm−1, am−1, xm−1, qm)),

with,

∀i ∈ [0,m− 1], qi+1 ∈ δ(qi, ai).

The extended definition of σ to a path in graph is:

σ(π) = x0x1...xm−1.

Let us denote by π ∈ q q′ the set of paths from q to q′ labeled with the input string w. The definition of
δ can be extended to Q× Σ∗ as:

∀(q, w) ∈ Q× Σ∗, δ(q, w) = {q′ : ∃ path π in T, π ∈ q q′}.

Similarly, the δ can be extended to 2Q × Σ∗, by:

∀R ⊆ Q, ∀w ∈ Σ∗, δ(R, w) =
⋃

q∈R

δ(q, w). (5.3)

5.7 English Language Morphology

Morphology is study of, how the words are constructed. Construction of English language words through
attachment of prefixes and suffixes (both together called affix) are called concatenative morphology, because
a word is composed of number of morphemes concatenated together. A word may have more than one affix,
for example rewrites (re+write+s), unlikely (un+like+ly), etc. There are broadly two ways to form words
using morphemes:

1. Inflection: Inflectional morphology form the words using the same group word stem, e.g., write+s,
word+ed, etc. The Table 5.1 shows the words constructed using inflective morphology.

2. Derivation: Derivations morphology produces a word of different stem, for example computerization
(noun) from computerize (verb) – the words belong to different groups.

5-10 Lecture 5: Finite Automata and Morphological Parsing

Table 5.1: Inflectional Morphology.

Type Regular nouns Irregular
nouns

Singular cat, thrush mouse, ox
Plural cats, thrushes mice, oxen

The examples of regular verbs are walk, walks, walking, walked. Similarly, irregularly inflected verbs are:
“eat, eats, eating, ate, eaten, catch, catches, cut, cuts, cutting, caught,” etc.

The derivation is a combination of word stem with grammatical morpheme, usually resulting in a word of
different class. For example, formation of nouns from verbs and adjectives. The Table 5.2 shows the examples
of derivational morphology.

Table 5.2: Derivational Morphology.

Suffix Base
verb/adjective

Derived
Noun

-action computerize (V) Computerization
-ee appoint (V) appointee
-er kill (V) killer
-ness fuzzy (A) fuzziness

5.8 Morphology and Finite-state Transducers

To know the structure about a word when we perform the morphological parsing for that word. Given a
surface form (input form), e.g., “going” we might produce the parsed form: verb-go + gerund-ing. Morpho-
logical parsing can be done with the help of finite-state transducer. A morpheme is a meaning bearing unit
of any language. For example,

fox: has single morpheme, fox and,

cats: has two morphemes, cat, -s.

Similarly, eat, eats, eating, ate, eaten have different morphemes.

Some examples of mapping of certain words and corresponding morphemes are given in the Table 5.3. The
mapping of input and output correspond to the input and output of finite state machines.

In speech recognition, when a word has been identified, like cats, dogs, it becomes necessary to produce its
morphological parsing, to find out its true meaning, in the form of its structure, as well to know how it is
organized. These include the features, like N (noun), V (verb), specify additional information about the
word stem, e.g., +N means that word is noun, +SG means singular, +PL for plural, etc.

We require following databases for building morphological parser:

1. Lexicon: List of stems, and affixes, plus additional information about them, like +N, +V.

Lecture 5: Finite Automata and Morphological Parsing 5-11

Table 5.3: Mapping of input word to Morphemes.

Input
Words

Morphological parsed
output

cats cat +N +PL
cat cat +N +SG
cities city +N +PL
geese goose +N +PL
goose goose +V +3SG
caught catch +V +PAST-Part

2. Morphotactics rules: Rules about ordering of morphemes in a word, e.g. -ed is followed after a verb
(e.g., worked, studied), un (undo) precede a verb, for example, unlock, untie, etc.

3. Orthographic rules (spelling): For combining morphemes, e.g., city+ -s gives cities and not citys.

We can use the lexicons together with morphotactics (rules) to recognize the words with the help of finite
automata in the form of stem+affix+part-of-speech (N, V, etc). The Fig. 5.7 shows the basic idea of parsing
of nouns using morphological parsing. Recognition of nouns by FA is subject to reaching to final state
(marked by double circle in figure) of FA. Table 5.4 shows some examples of regular and irregular nouns.

q0 q1 q2

irreg-pl-noun

irreg-sg-noun

reg-noun pluran(-s)

Figure 5.7: Morphological Parsing of nouns.

Table 5.4: Regular and Irregular nouns.

Reg-
noun

Plural Irreg-
noun

Irreg-sg-
noun

fox -es goose geese
cat -s sheep sheep
dog -s mouse mice

A similar arrangement is possible for verb morphological parsing (see Fig. 5.8, and Table 5.5). The lexicon
for verbal inflection have three stem classes (reg-verb stem, irreg-verb stem, and irreg-past-verb), with affix
classes are: -ed for past and participle, -ing for continuous, and 3rd person singular has -s.

Adjectives can be parsed in the similar manner like, the nouns and verbs. Some of the adjectives of English
language are: big, bigger, biggest, clean, cleaner, cleanest, happy, unhappy, happier, happiest, real, really,
unreal, etc. The finite automata in Fig. 5.9 is showing the morphological parsing for adjective words.

At the next stage, the lexicon can be expanded to sub-lexicons, i.e, individual letters, to be recognized by
the finite automata. For example, regular-noun in Fig. 5.7 can be expanded to letters “f o x” connected by
three states in a transition diagram. Similarly, the regular verb stem in Fig. 5.8 can be expanded by letters
“w a l k”, and so on, as shown in Fig. 5.10. Note that in the parsing of N, V, ADJ, and ADV discussed
above, for the sake of simplicity we have not shown the transitions separated by colon (‘:”), however, the
FST has two tapes as usual, for input and output.

5-12 Lecture 5: Finite Automata and Morphological Parsing

q0 q1 q3

irreg-past-verb

cont(-ing)

reg-verb-stem past (-ed)

q2
irreg-verb-stem

reg-verb-stem

Figure 5.8: Morphological Parsing of verbs

Table 5.5: Regular and Irregular verbs.
Reg-verb Past Irreg-verb Irreg-past-v Cont. 3sg
walk -ed catch caught -ing -s
fry -ed eat ate -ing -s
talk -ed sing eaten -ing -s

5.9 Finite State Transducers and Morphological Analysis

The objective of the morphological parsing is to produce output lexicons for a single input lexicon, e.g., like it
is given in table 5.6. The second column in the table contains the stem of the corresponding word (lexicon) in
first column, along with its morphological features, like, +N means word is noun, +SG means it is singular,
+PL means it is plural, +V for verb, and pres-part for present participle. We achieve it through two level
morphology, which represents a word as a correspondence between lexical level - a simple concatenation of
lexicons, as shown in column 2 of Table 5.6, and a surface level as shown in column 1. These corresponds to
two tapes of a finite state transducer.

The FST is a multi-function device, and can be viewed in the following ways:

• Translator: It reads one string on one tape and outputs another string on other tape, it may receive
input “cats” on surface tape, and produce parsed output “cat +N +PL” on lexical tape. Alternatively,
the role of input and output tape can be interchanged.

• Recognizer: It takes a pair of strings as two tapes and accepts/rejects based on their matching. Foe
example, when both the contents is as shown in Fig. 5.11, then it accepts translation, if one of the tape
is having different contents, then the FST rejects (no match).

• Generator: It outputs a pair of strings of that language, on two tapes along with yes/no result based
on whether they are matching or not. Hence, acts as generator.

• Relater: It compares the relation between two sets of strings available on two tapes.

Table 5.6: Lexical Transformation table.
Input Parsed output

cat cat +N +SG
cats cat +N +PL
geese goose +N +PL
reading read +V +Pres-

part

Lecture 5: Finite Automata and Morphological Parsing 5-13

q0 q1 q2 q3

un-

ε

adj-root -er, -est, -ly

Figure 5.9: Morphological Parsing for adjectives.

f

o
x

s

c
a t

d
o

g

n
k

e

y

ε

g

o
o s

e

e
e

Figure 5.10: Morphological Parsing for noun words in details.

Like FSA (Finite State Automata) are isomorphic to regular expressions, the FSTs are isomorphic to regular
relations. The FSTs are closed on the following relations:

1. Union: If R1 and R2 are relations on FST, then R1 ∪R2 is also a relation on FST.

2. Composition: If T1 is FST from I1 to O1, and T2 is FST from I2 to O2, then T2 ◦ T1 is FST from I1
to O2.

3. Inversion: The FSTs are closed on inversion. A transducer T ′ (or T−1) simply switches the input and
output labels on each transition.

The composition operation is useful because it replaces two FST running in series by a single FST. The
composition works as in algebra. Applying T2 ◦ T1 to input sequence S is equal to applying T1 to S, and
then T2 to result T1(S), i.e.,

T2 ◦ T1(S) = T2(T1(S)) (5.4)

Similarly, the composition is useful to convert a FST as parser to FST as a generator2,3.

In two level morphology, the lexical tape is composed of symbols from a in a : b pairs, and the surface tape
comprises the symbols from b in this pair. Hence, each symbol pair a : b gives mapping from one tape to
other tape. The symbols a : a are called default pairs and written simply as a as shown in Fig. 5.12 shows
as transitions: q0 − q1.

The Fig. 5.12 shows the transition diagram for FST with additional symbols +SG (singular), +PL (plural),
corresponding to each morpheme. These symbols map to empty string (ε), as there are no corresponding
symbols on output (surface) tape.

2Parser : A parser parse (convert) a word into its constituent components, e.g., “cats” is parsed into “cat +N +PL.”
3Generator: Given “cat” as a lexicon for noun, and that its plural form +PL, use “cat +N +PL”, generate the word “cats.”

5-14 Lecture 5: Finite Automata and Morphological Parsing

c a t +N +PL

c a t s Surface tape

Lexical tape

Figure 5.11: A FST.

q0

q1

q2

q3

q4

q5

q6

q7

reg-noun-ste
m

irreg-sg-noun-

irreg-pl-noun-form

+N : ε

+N : ε

+N : ε

+PL
: ∧S#+SG

: #

+SG : #

+P
L : #

form

Figure 5.12: Morphological Parsing using FST.

The symbol # stands for boundary symbol. Typical example of mapping, e.g., in case of word “geese”
(irregular noun), on surface tape will be parsed into goose +N +PL on lexical tape, and symbols on the arc
joining states q0 - q2 are “g:g o:e o:e s:s e:e”, which is written as “g o:e o:e s e”. Since, there are five letters
in the word, there will be five state transitions between q0 - q2. For regular noun, like fox, it will be “f:f o:o
x:x”. The surface form “geese” is mapped to lexical form “goose +N +SG” through cascading the FSTs,
where two automata are run in series, i.e. output of first becomes input to next. This is what we discussed
earlier as P-subsequential transducer.

Instead of cascading two transducers, we perform this job using composition operator. Composing the
transducers in this way helps in taking many different levels of input and outputs, and converting them
into a single two level transducer with one input and one output tape. A typical FST, which results for
morphological parsing of “cat” is shown in Fig. 5.13, producing a mapping c:c a:a t:t +N:ε +PL:∧S#. The
+PL maps to ∧S. The symbol ∧ indicates the morpheme boundary, and # indicates the word boundary.

c a t +N +PL

c a t ∧ S

Lexical tape

Intermediate tape#

Figure 5.13: Morphological Parsing (Lexical and Intermediate tapes).

5.9.1 Orthographic Rules

We note that concatenating the morphemes can work to parse the words like “dog”, “cat”, “fox”, but this
simple method does not work when there is spelling change, like “foxes” is to be parsed into lexicons “fox
+N +PL” or “cats” is to be parsed into “cat +N +3SG”, etc. This requires introduction of spelling rules
(also called orthographic rules).

To account for the spelling rules, we introduce another tape, called intermediate tape, which produces the
output slightly modified, thus going from 2-level to 3-level morphology. Such a rule maps from intermediate
tape to surface tape. For plural nouns, the rule states, “insert e on the surface tape just when intermediate
tape has a morpheme ending in x or z or s and next morpheme is -s”. The examples are ox to oxes, and fox

Lecture 5: Finite Automata and Morphological Parsing 5-15

to foxes. The rule is stated as equation (5.5),

ε→ e/







x
s
z







∧ −−− S# (5.5)

The equation 5.5 is called Chomsky and Hall notation. A rule of the form a→ b/c− d means rewrite a as b,
when it occurs between c and d. Since symbol ε is null, and it occurs between ∧ and S on intermediate tape,
therefore replacing ε (null) by e means inserting e between ∧ and S. The symbol ∧ indicates morpheme
boundary. These boundaries are deleted by including the symbol pair ∧ : ε in Fig. 5.12, the default pairs
for the transducer (I : O), i.e., in the graph, the symbol ‘:’ indicates that 1st symbol is on intermediate
tape and ε is on surface tape. The mapping of symbols shown in Fig. (5.14), is called morphological parsing.
There are n number of FSTs, indicating that there are n number of rules encoded.

f o x +N +PL

f o x ∧ S Intermediate tape#

f o x e S Surface tape

Lexical tape

Lexical - FST

b b bFST1 FSTn Orthographic rules

Figure 5.14: Morphological Parsing using 3-tape FSTs.

Using these multi-level FSTs in sequence between different tapes, as well as through parallel transducers
for spelling checks, we are able to parse those words whose morphological analysis is simple. However,
considering the sentence “The police books the right culprit”, here it is not clear as per above rules that
whether the lexical parser’s output is “book +N +PL” or it is“book +V +3SG” ! However, to human it is
not difficult to infer that it is the second option. This is due to the ambiguity in the word, which may be a
noun or a verb, depending on its position in a sentence. This type of ambiguity is called lexical ambiguity,
and is the subject of later discussions.

Review Questions

1. Explain the difference between sequential and subsequential transducers.

2. What are the roles of lexical tape and surface tape in a finite state transducer? Explain.

3. Can we use Chomsky-Hall rule for verb, adverb, adjective?

5-16 Lecture 5: Finite Automata and Morphological Parsing

Exercises

1. Draw the minimal deterministic automaton that accepts:

{CV,CV C, V C, V }(.{CV,CV C, V C, V })∗

2. What is space and time complexity of FA in following?

(a) Lexical Analysers

(b) Morphological Parsing

3. Define the field and scope of computational linguistics.

4. Explain with example, how a P -subsequential transducer can be used for resolving ambiguity.

5. Explain, how a FA can be useful in Computational Morphology? Give examples.

6. Demonstrate the morphological parsing for any five English language words.

7. Give your idea, as how you will translate the English language words to Hindi. Give five examples.

8. What are the functions of following databases used by Morphological parser?

(a) Lexicon

(b) Morphotactic rules

(c) Orthographic rules

9. Justify the statement: “FSTs are isomorphic to regular relations.”

10. What are the general applications of FSTs? Explain each application with at least one example, in
details.

11. Give some idea to resolve the morphemes to similarly pronounced words, like “bread”, “dread”, “red”,
“read”, “raid.”

12. Write a program /algorithm to produce your own version of stemer, which produces stem words from
some nouns only.

13. Explain the Morphological parsing of following words using two level tapes FSTs: horse, donkey, house,
cat, men.

14. What are the Sequential Transducers? How they can be used for language modelling? Explain.

15. Explain the application of sub-sequential and p-subsequential transducers for ambiguity resolution in
languages and grammars.

16. How the dictionaries can be looked / searched at speed using P -subsequential transducers? Give an
example, as well as an algorithm for the same.

17. Suggest a block diagram / flow-diagram, as how the large size dictionaries can be implemented and
searched using P -subsequential transducers?

18. What is difference between two-level and three level FSTs, used for morphological parsing? For the
following words, which type of FST is required?

book, booking, eat, ate, eaten

Lecture 5: Finite Automata and Morphological Parsing 5-17

19. (a) What is Chomsky-and-Hall(CH) equation? How is is useful for defining orthographic rules? Ex-
plain.

(b) Which of the following words’ morphological parsing is generated by CH equation?

cats, dogs, goose, foxes, oxes.

20. Can all the languages be modelled with Finite state automata?

21. How can you prove that a language is regular?

22. How many levels (”tapes”) are used for morphological parsing? What are their names? Give an
example of how these tapes would like when parsing following words:

(a) Mice

(b) Mouse

(c) Churches

(d) Temples

(e) Mosques

23. Write the algorithms for following:

(a) Parsing of regular nouns.

(b) Parsing of irregular nouns.

(c) Parsing of regular verbs.

(d) Parsing of irregular verbs.

(e) Parsing of adjectives.

24. What are the databases required for morphological parsing? Describe each, with its possible structure.

25. Perform the study of information available in any English dictionary, and list the information content
in that, particularly that which is helpful for morphological parsing.

Note: In the next four exercises, it is aimed to parse nicknames such as Robbie (for Robert) or Patty
(for Patricia).

26. Build a lexicon automaton FSA1 that recognizes the first names followed by “+NN”(for nick name).

27. (a) Build a FSA that represents the morphotactics behind the nicknames, i.e., abbreviate and append
by ie or y. The FSA should recognize the strings such as “Robˆy#”.

(b) Convert this automaton to a finite state transducer FST-A which maps lexical level, e.g., “Robert
+NN”, to an intermediate level, e.g., “Robˆy#”.

28. (a) Give an orthographic rule which doubles the consonant before y or ie.

(b) Implement this rule as a finite state transducer FST-B.

29. How will you compose FSA, FST-A and FST-B to build a morphological parser for these nicknames?

5-18 Lecture 5: Finite Automata and Morphological Parsing

References

[1] Jurafsky D and Martin J, Speech and Language Processing, 3rd Ed., Pearson India, isbn: 3257227892,
Nov. 2005.

[2] Mohri M, Finite-state Transducers in Language and Speech Processing, Comput. Linguist., Vol. 23, No.
2, June 1997, issn: 0891-2017, pp.269–311, MIT Press, Cambridge, MA, USA

[3] Mohri M, et al. The Design Principles of a Weighted Finite-State Transducer Library, Preprint sub-
mitted to Elsevier Preprint, 5 May 2002, pp. 1-19

[4] Cyril Allauzen and Mehryar Mohri, p-Subsequentiable Transducers AT&T Labs, J. M. Champarnaud
and D. Maurel (Eds.): CIAA 2002, LNCS 2608, pp. 24-34, 2003. Springer-Verlag Berlin Heidelberg
2003.

