
Parallel Processing Technology (Parallel computing and its models)

Lecture 02: Jan. 10, 2022

Prof. K.R. Chowdhary : Professor of CS

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal

publications. They may be distributed outside this class only with the permission of the

Instructor.

2.1 Parallel Computing and Parallel Algorithms

Let Π be an arbitrary computational problem which is to be solved by a computer. Usually
our first objective is to design an algorithm for solving Π . Clearly, the class of all algorithms
is infinite, but we can partition it into two subclasses, the class of all sequential algorithms

and the class of all parallel algorithms. While a sequential algorithm performs one operation
in each step, a parallel algorithm may perform multiple operations in a single step. In this
lecture, we will be mainly interested in parallel algorithms. So, our objective is to design a
parallel algorithm for Π.

Let P be an arbitrary parallel algorithm. We say that there is parallelism in P . The
parallelism in P can be exploited by various kinds of parallel computers. For instance,
multiple operations of P may be executed simultaneously by multiple processing units of a
parallel computer C1; or, perhaps, they may be executed by multiple pipelined functional
units of a single-processor computer C2. After all, P can always be sequentially executed
on a single-processor computer C3 simply by executing P ’s potentially parallel operations
one by one in succession.

Let C(p) be a parallel computer of the kind C (C1 or C2 or C3) which contains p processing
units. Naturally, we expect the performance of program P on C(p) to depend both on C

and p. We must, therefore, clearly distinguish between the potential parallelism in P on the
one side, and the actual capability of C(p) to execute in parallel, the multiple operations of
P , on the other side. So the performance of the algorithm P on the parallel computer C(p)
depends on C(p)’s capability to exploit P ’s potential parallelism.

Before we continue, we must unambiguously define what we really mean by the term “per-
formance” of a parallel algorithm P . Intuitively, the “performance” might mean the time
required to execute P on C(p); this is called the parallel execution time (or, parallel runtime)
of P on C(p), which we will denote by, Tp.

Alternatively, we might choose the “performance” to mean how many times is the parallel
execution of P on C(p) faster than the sequential execution of P (Ts); this is called the
speedup S of parallel algorithm P on computer C(p),

S =
Ts

Tp

. (2.1)

So parallel execution of algorithm P on computer C(p) is S-times faster than sequential
execution of P .

2-1



2-2 Lecture 02: Jan. 10, 2022

Next, we might be interested in how much of the speedup S is on average, due to each of
the processing units. Put differently, the term “performance” might be understood as the
average contribution of each of the p processing units of C(p) to the speedup; this is called
the “efficiency” E of P on C(p),

E =
S

P
. (2.2)

Since Tp ≤ Ts ≤ pTp, it follows that speedup is bounded above by p and efficiency is bounded
above by

E ≤ 1. (2.3)

Note that speedup increases due to increse in number of processors p, i.e., more you pay,
more you gain. but, how much is gain due to each processor on the average, is efficiency.
So is also very important.

This means that, for any C and p, the parallel execution of P on C(p) can be at most p

times faster than the execution of P on a single processor. And the efficiency of the parallel
execution of P on C(p) can be at most 1. (This is when each processing unit is continually
engaged in the execution of P , thus contributing 1

p
-th to its speedup.)

From the above definitions we see that both speedup and efficiency depend on Tp, the
parallel execution time of program P on computer C(p). This raises new questions:

� How do we determine Tp?

� How does Tpar depend on C (the type of the parallel computer) ?

� Which properties of C must we take into account in order to determine Tp ?

These are important general questions about parallel computation, and must be answered
prior to embarking on a practical design and analysis of parallel algorithms. The answer to
answer these questions help in appropriately modeling the parallel computation, discussed
in the next section.

2.2 Modeling Parallel Computation

Parallel computers vary in big way in their organization. We will see that their processing
units may or may not be directly connected one to another; some of the processing units
may share a common memory while the others may only own local (private) memories; the
operation of the processing units may be synchronized by a common clock (synchronous),
or they may run each at its own pace (asynchronous). Furthermore, usually there are archi-
tectural details and hardware specifics of the components, all of which show up during the
actual design and use of a computer. And finally, there are technological differences, which
prevail in different clock rates, memory access times etc. Hence, the following important
question arises:

“Which properties of parallel computers must be considered and which may be ignored in
the design and analysis of parallel algorithms?”



Lecture 02: Jan. 10, 2022 2-3

To answer this question, we apply ideas of sequential computation. We discussed various
models of computation. In short, the intention of each of these models was to abstract away
the relevant properties of the (sequential) computation from the irrelevant ones.

In our case, a model called the Random Access Machine (RAM) is particularly attractive.
The reason is that RAM distills the important properties of the general-purpose sequential
computers, which are still extensively used today, and which have actually been taken as
the conceptual basis for modeling of parallel computing and parallel computers. Figure 2.1
shows the simple structure of the RAM.

Processing Unit

Memory

registers
pc = r1
a = r2

.

.

.

rn

m0 m1 . . . mk

k

(a) (b)

P

M

Figure 2.1: (a) RAM model of computation with memory M and processing unit P , (b)
Symbol of RAM model

The RAM consists of a processing unit and a memory. The memory is a potentially infinite
sequence of equally sized locations m0,m1, ... . The index i is called the address of mi. Each
location is directly accessible by the processing unit: given an arbitrary i, reading from mi

or writing to mi is accomplished in constant time.

Registers are a sequence r1...rn of locations in the processing unit. Registers are directly
accessible. Two of them have special roles. Program counter pc (=r1) contains the address of
the location in the memory which contains the instruction to be executed next. Accumulator
a (=r2) is involved in the execution of each instruction. Other registers are given roles as
needed. The program is a finite sequence of instructions (similar to those in real computers).

Before the RAM is started, the following is done: (a) a program is loaded into successive
locations of the memory starting with, say, m0; (b) input data are written into empty
memory locations, say after the last instruction in the program. From now on, the RAM
operates independently in a mechanical step-wise fashion as instructed by the program. Let
pc = k at the beginning of a step. (Initially, k = 0.) From the location mk, the instruction
I is read and executed. At the same time, pc is incremented. So, when I is completed, the
next instruction to be executed is at mk+1, unless I was one of the instructions that change
pc (e.g. jump instructions).

So the above question can be modified as : What is the appropriate model of parallel
computation? It turned out that finding an answer to this question is substantially more
challenging than it was in the case of sequential computation, because, as there are many
ways to organize parallel computers, there are also many ways to model them; and what is
difficult is to select a single model that will be appropriate for all parallel computers. As a
result, in the past several models were proposed for parallel computation. However, so far
no common agreement has been reached about which is the right one. In the following, we



2-4 Lecture 02: Jan. 10, 2022

describe the models based on RAM.

Self Review Questions

1. How do you differentiate between sequential and parallel algorithms?

2. What are the possible hardware based computer classes on which you can run parallel
algorithms?

3. What is speedup in parallel computers?

4. What is meaning of performance of parallel computer?

5. What questions we must answer before we model a parallel computer?

6. “For any computer C and processors’ count p, the execution of a program P on C(p)
can be at most p times faster than P on a sequential processor.” Justify this.

7. How a RAM is different from conventional computer?

8. How a PRAM is different from conventional computer?


