
Parallel Processing Technology (Multiprocessor Models)

Lecture 03: Jan. 13, 2022

Prof. K.R. Chowdhary : Professor of CS

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal

publications. They may be distributed outside this class only with the permission of the

Instructor.

3.1 Multiprocessor Models

A multiprocessor model of parallel computation is based on the RAM model of serial com-
putation, i.e., it generalizes the RAM. In fact, the generalization can be done in three
essentially different ways resulting in three different multiprocessor models. Each of the
three models has some number p (p ≥ 2) of processing units, but the models differ in the
organization of their memories and in the way the processing units access the memories.

These models are called:

1. Parallel Random Access Machine (PRAM),

2. Local Memory Machine (LMM), and

3. Modular Memory Machine (MMM).

3.1.1 Parallel Random Access Machine

The Parallel Random Access Machine, in short PRAM model, has p processing units that
are all connected to a common unbounded shared memory (Fig. 3.1). Each processing unit
can, in one step, access any location (word) in the shared memory by issuing a memory
request directly to the shared memory.

The PRAM model of parallel computation is idealized in several respects. First, there is
no limit on the number p of processing units, but p is finite. Next, also idealistic is the
assumption that a processing unit can access any location in the shared memory in one
single step. Finally, for words in the shared memory it is only assumed that they are of the
same size, but can be of arbitrary finite size.

Note that in this model there is no interconnection network for transferring memory requests
and data back and forth between processing units and shared memory.

However, the assumption that any processing unit can access any memory location in one
step is unrealistic. To see why, suppose that processing units Pi and Pj simultaneously issue
instructions Ii and Ij where both instructions intend to access (for reading from or writing
to) the same memory location L (Fig. 3.1(b)).

3-1

3-2 Lecture 03: Jan. 13, 2022

Shared Memory

Shared Memory

P1 P2 P3 Pp
Pi Pj.

Ii IjL

(a) (b)

Figure 3.1: (a) The PRAM model of parallel computation, (b) Hazards of simultaneous
access to a location. Two processing units simultaneously issue instructions each of which
needs to access the same location L

The Fig. 3.1(a) shows The PRAM model of parallel computation, where p processing units
share an unbounded memory. Each processing unit can in one step access any memory
location. The Fig. 3.1(b) shows hazards of simultaneous access to a location. Two processing
units simultaneously issue instructions each of which needs to access the same location L.

Even if a truly simultaneous physical access to L had been possible, such an access could
have resulted in unpredictable contents of L. Imagine what would be the contents of L after
simultaneously writing the values 3 and 5 into it. Thus, it is reasonable to assume that,
eventually, actual accesses by instructions Ii and Ij to L are somehow, on the fly serialized
by hardware so that Ii and Ij physically access L one after the other1.

Does such an implicit serialization neutralize all hazards of simultaneous access to the same
location? Unfortunately not so. The reason is that the order of physical accesses of Ii and
Ij to L is unpredictable: after the serialization, we cannot know whether Ii will physically
access L before or after Ij . Consequently, also the effects of instructions Ii and Ij are
unpredictable. This is as follows: If both Pi and Pj want to read simultaneously from L, the
instructions Ii and Ij will both read the same contents of L, regardless of their serialization,
so both processing units will receive the same contents of L–as expected. However, if one of
the processing units wants to read from L and the other simultaneously wants to write to L,
then the data received by the reading processing unit will depend on whether the reading
instruction has been serialized before or after the writing instruction. Moreover, if both Pi

and Pj simultaneously attempt to write to L, the resulting contents of L will depend on
how Ii and Ij have been serialized, i.e., which of Ii and Ij was the last to physically write
to L.

In sum, simultaneous access to the same location may end in unpredictable data in the
accessing processing units as well as in the accessed location.

In view of the conclusion drawn above, the question arises: Does this unpredictability make
the PRAM model useless? The answer is no, as we will see shortly.

There can be several variants of PRAMs. For example, what types of simultaneous accesses
to the same location are allowed, and the way in which unpreidtability is avoided when
simultaneously accessing the same location. The variants of PRAMs are as follows:

� Exclusive Read Exclusive Write PRAM (EREW-PRAM): This is the most realistic

1Note that memory modification is through fetch-modify-rewrite cycle. If fetch of location L is done by

Ii followed with thsi Ij fetches L, and modification is done in the same order, the Ij will overwrite L that

has been modified by Ii, and not the one which it has fetched.

Lecture 03: Jan. 13, 2022 3-3

of the three variations. This model does not support simultaneous accessing to the
same memory location; if such an attempt is made, the model stops executing its
program. Accordingly, the implicit assumption is that programs running on EREW-
PRAM never issue instructions that would simultaneously access the same location.
Construction of such programs is the responsibility of algorithm designers.

� Concurrent Read Exclusive Write PRAM (CREW-PRAM): This model supports si-
multaneous reads from the same memory location but requires exclusive writes to it.
Again, the burden of constructing such programs is on the algorithm designer.

� Concurrent Read Concurrent Write PRAM (CRCW-PRAM): This is the least realistic
of the three versions of the PRAM model. The CRCW-PRAM model allows simulta-
neous reads from the same memory location, simultaneous writes to the same memory
location, and simultaneous reads from and writes to the same memory location. How-
ever, to avoid unpredictable effects, different additional restrictions are imposed on
simultaneous writes. This yields the following versions of the model CRCW-PRAM:
1. Consistent (processing unit may simultaneously attempt to write to L, but assumed
that all write the same value), 2. Arbitrary (simultaneously write, but may not the
same value), however, only one will succeed, and 3. Priority (priority order imposed
for writing).

Relevance of the PRAM model to parallel computing

The answer of relevance of PRAM model depends on what we expect from the PRAM
model or, more generally, how we understand the role of theory. When we strive to design
an algorithm for solving a problem Π on PRAM, our efforts may not end up with a practical
algorithm, ready for solving Π. However, the design may reveal something inherent to Π,
namely, that Π is parallelizable. In other words, the design may detect in Π subproblems
some of which could, at least in principle, be solved in parallel. In this case it usually proves
that such subproblems are indeed solvable in parallel on the most liberal (and unrealistic)
PRAM, the CRCW-PRAM.

We can replace CRCW-PRAM by the realistic EREW-PRAM and solve Π on the latter, all
of that at the cost of a limited degradation in the speed of solving Π. In sum, the relevance
of PRAM is reflected in the following method:

1. Design a program P for solving Π on the model CRCW-PRAM(p), where p (number of
processor units) may depend on the problem Π . Note that the design of P for CRCW-
PRAM is expected to be easier than the design for EREW-PRAM, simply because
CRCW-PRAM has no simultaneous-access restrictions to be taken into account.

2. Run P on EREW-PRAM(p), which is assumed to be able to simulate simultane-ous
accesses to the same location.

3. Guarantee that the parallel execution time of P on EREW-PRAM(p) is at most
O(log p)-times higher than it would be on the less realistic CRCW-PRAM(p).

3.1.2 The Local-Memory Machine

The LMM model has p processing units, each with its own local memory (Fig. 3.2). The
processing units are connected to a common interconnection network. Each processing unit

3-4 Lecture 03: Jan. 13, 2022

can access its own local memory directly. In contrast, it can access a non-local memory
(i.e., local memory of another processing unit) only by sending a memory request through
the interconnection network.

The assumption is that all local operations, including accessing the local memory, take unit
time. In contrast, the time required to access a non-local memory depends on:-

1. the capability of the interconnection network, and

2. the pattern of coincident non-local memory accesses of other processing units as the
accesses may congest the interconnection network.

Interconnection network

P1 P2 P3 Pp
. . .

M1 M2
Mm

Interconnection network

P1 P2 P3 Pp
. . .

M1 M2
Mp

(a) (b)

M3

Figure 3.2: (a) LMM model, each machine with its own memory, (b) MMM model with
sharable memories

Fig. 3.2(a) shows the LMM model of parallel computation has p processing units each with
its local memory. Each processing unit directly accesses its local memory and can access
other processing unit’s local memory via the interconnection network.

3.1.3 Modular Memory machine

The Fig. 3.2(b) shows the MMM model of parallel computation with p processing units
and m memory modules. Each processing unit can access any memory module via the
interconnection network.

There are no local memories to the processing units.

3.2 Communication in Parallel Processing

We have seen that both LMM model and MMM model explicitly use interconnection net-
works to convey memory requests to the non-local memories (see Figs. 3.2(a) and 3.2(b)).
In this section we focus on the role of an interconnection network in a multiprocessor model
and its impact on the the parallel time complexity of parallel algorithms.

Interconnection Networks

Since the start of parallel computing, the major components of a parallel system have been
the type of the central processing unit (CPU) and the interconnection network. This is

Lecture 03: Jan. 13, 2022 3-5

now changing. Recent experiments have shown that execution times of most real world
parallel applications are becoming more and more dependent on the communication time
rather than on the calculation time. So, as the number of cooperating processing units or
computers increases, the performance of interconnection networks is becoming more impor-
tant than the performance of the processing unit. Specifically, the interconnection network
has great impact on the efficiency and scalability of a parallel computer on most real world
parallel applications. In other words, high performance of an interconnection network may
ultimately reflect in higher speedups, because such an interconnection network can shorten
the overall parallel execution time as well as increase the number of processing units that
can be efficiently exploited.

The performance of an interconnection network depends on several factors. Three of the
most important are the routing, the flow-control algorithms, and the network topology.

Definition 3.1 Routing. Here routing is the process of selecting a path for traffic in an

interconnection network. �

Definition 3.2 Flow-control. Flow control is the process of managing the rate of data

transmission between two nodes to prevent a fast sender from overwhelming a slow receiver.�

Definition 3.3 Network-topology. Network topology is the arrangement of the various ele-

ments, such as communication nodes and channels, of an interconnection network. �

For the routing and flow-control algorithms efficient techniques are already known and used.
In contrast, network topologies have not been adjusting to changes in technological trends as
promptly as the routing and flow-control algorithms. This is one reason that many network
topologies which were discovered soon after the parallel computing came into existence are
still being widely used. Another reason is the freedom that end users have when they are
choosing the appropriate network topology for the anticipated usage. However, the end users
have no option available now in choosing or altering routing or flow-control algorithms. As
a consequence, a further step in performance increase can be expected to come from the
improvements in the topology of interconnection networks. For example, such improvements
should enable interconnection networks to dynamically adapt to the current application in
some optimal way.

Self Review Questions

1. How a RAM model is different from conventional von Newmann machine model?

2. How a PRAM model is different from a von Newmann machine model?

3. The shared memory model comprises interconnection network between processor and
memory (True/False)?

4. In shared memory system, the memory words can be of different sizes in different
memory locations (True/False)?

5. How the simultaneous access to same location is protected in PRAM machine?

6. Who will be responsible for the read-write control program in EREW-PRAM and in
CREW-PRAM machines?

3-6 Lecture 03: Jan. 13, 2022

(a) Application programmar

(b) System programmar

(c) Operating system

(d) Built-in the hardware

7. What are the three variants of PRAM models with respect to rad/write operations in
memory?

8. How the consistent, arbitray, and priority models of CRCW-PRAM differ from each
other?

9. Performance of the Interconnection-Networks depend on what major factors?

10. Explain the symmetric and regular interconnection networks.

11. What are the criterias that make an interconnection network scalable?

12. How many crossbar switches are there in a 100× 100 connected crossbar switch that
connects 100 processors to 100 memory modules?

Exercises

1. Design of which of the following is most difficult and costly out of the following?
Justify your answer.

(a) EREW-PRAM

(b) CREW-PRAM

(c) CRCW-PRAM

2. Explain with diagram a general communication network using graph. Explain, how
you will compute the diameter of this graph? Also, give the logical steps (algorithm)
to computer the diameter of such graph (network).

