
Introduction to Theory of Computation

Prof. (Dr.) K.R. Chowdhary
Email: kr.chowdhary@iitj.ac.in

Former Professor & Head, Department of Computer Sc. & Engineering
MBM Engineering College, Jodhpur

Wednesday 30th November, 2016

kr chowdhary TOC 1/ 16

What is TOC?

The TOC is that knowledge of computer science, which does not change
with time & technology. The course is divided into:

1 Theory of automata: Every process (including computing) can be
divided into discrete sequence of states, where there is always start state,
and there is a final state, with in between states. In this category, we may
consider the computation, and growth of life, and even the planatary
motions. All these systems are automata. The concept of automata was
given by Von Neumann, in 1940s, in the form of cellular automata.

2 Theory of languages: Under this comes all types of grammars -
computers’ languages grammars, spoken languages grammars, and yet
unknown grammars, and all corresponding languages. The concept of
generative grammar was given first time by Prof. Noam Chomsky, in 1956.

3 Theory of Computation: The contributors were Kurt Gödel, Alonzo

Church, Alan Turing, Kleene. However, the maximum contribution is due

to Alan Turing, who gave the concept of Turing machine in his 1936

paper (much before the computers came into existence).

kr chowdhary TOC 2/ 16

What is TOC?

TOC attempts to establish a theory to all subjects of CS, just like
classical dynamics to motion of objects

Solvability of a problem ⇒ existence of algorithm.

TOC says that some problems are unsolvable, e.g., Russell’s
Paradox, given by {x |x /∈ x}

TOC deals with Physical limits of computing, Methodologies of
Algorithm design, etc.

CS is : Science of algorithm processing, representation, storage,
transmission of information

Nature of problems we deal with are classified based on their level of
difficulty for computer,i.e., complexity

Application of computer theory: writing programs to construct
compilers, assemblers, OS, ..., and languages

kr chowdhary TOC 3/ 16

Meta-Theory and Proofs

Meta Theory: Theory about the theory (mathematics)

- Defines what is computable: A thing is computable if it can be
representable by an algorithm.

- Defines the Limits of computation

Proofs: Establishing that a statement is valid. One approach is: a
statement is valid if there is no counter example. e.g., All even
integers are divisible by 2 is valid. Proof by contradiction: find at
least a single case, where this is not true. Other approaches are:

1 Proofs by Deduction: Taking one value, then iterating is proof by
induction.

2 Proof by Induction: Execution of a sequence of program statements
is deductive proof

kr chowdhary TOC 4/ 16

Functions

f : D → R

for a,b ∈D, f (a) = f (b)⇒ a= b; f is injection or one-to-one
mapping.

for each b ∈ R , there is always a ∈D such that f (a) = b; f is
surjection (onto)

A relation which is both injection and surjection is called bijection.

Defining Natural Numbers

0 = {}= φ

0+ = 1 = {elements of 0, set 0 as element}={φ}

1+ = 2 = {φ ,{φ}}

2+ = 3 = . . .

. . .

kr chowdhary TOC 5/ 16

Infinite sets

Hence,

i)0 ∈ N

ii)if n ∈ N,∴ n+ ∈N

If there is a bijection between any set A and set n ∈ N,then A is
finite, alternatively,

If there is a bijection between any set A and set N, then A is infinite,

You can add any thing into an infinite, it results infinite only.
Example: Hilbert’s Hotel: To accommodate more guests in this
hotel, (say 1), push occupant of room 1 into 2, of 2 into room 3,
and so on. The room 1 is vacated, and ready for new guest.

You can subtract any thing from infinity, it remains infinity. For
example, you can map 40 onwards to infinity. For example,
40↔ 1,41↔ 2,43↔ 3, . . .

kr chowdhary TOC 6/ 16

Diagonalization Theorem

Theorem

There is no bijection between infinite sets N and R.

Proof.

Assume that f : N→R is bijection, ∴,

N R

0 0.b00b01b02 . . .
1 0.b10b11b12 . . .
2 0.b20b21b22 . . .
.
i 0.bi0bi1bi2 . . .

Therefore this list of R is exhaustive. bij ∈ {0,1}

Now consider the number, x = 0.¬b00¬b11¬b22 . . . Ṡince x is new,
hence the list of R is not exhaustive, this contradicts the assumption.
Thus, the mapping is not bijection. R is uncountably infinite.

kr chowdhary TOC 7/ 16

Cantor’s Theorem

Theorem

For f : A→℘(A), f is not surjection.

Proof.

Assume that f is surjection. Since ℘(A) are all subsets of A,
consider B ⊆ A, as an image of an element of A, which does not
include the element itself. ∴, B = {a ∈ A|a /∈ f (a)}

Thus, for every a ∈ A, we have a ∈ B iff a /∈ f (a). ∴ B 6= f (a), for
all a ∈ A.

Thus, B is not in the image of f . This contracts our assumption
that we considered in the beginning of this proof. Hence, this proves
that f is not a surjection, and hence not a bijection also.

kr chowdhary TOC 8/ 16

Cantor’s Theorem for infinite sets

Theorem

For f : N→℘(N), f is not surjection.

Proof.

Assume that f is surjection, to ultimately contradict it. Consider
now:

N ⇔ ℘(N)
0 ⇔ {5}
1 ⇔ {2,3}
2 ⇔ {1,2,5}
3 ⇔ {2,4,8}
. . . ⇔ . . .

We call the mapping between 2 and {1,2,5} as selfish, and between
1 and {2,3} as nonselfish.

Next we build a special set D of nonselfish numbers, to arrive at
contradiction. Naturally, D ∈℘(N). And, D = {d |d ∈ N,d /∈ f (d)}.
∴ D 6= f (d) (i.e., D is not any image!).This is contradiction. This
shows that f is not surjection. (Note: Compare this with previous).

kr chowdhary TOC 9/ 16

Functions

f : D → R

+ : int× int → int

⊆: S1×S2 →{T ,F}

Total Function: defined over the entire domain

f : x → 2x ,x ∈ N,N= {0,1,2, . . .}

Partial Function: defined over some domain points only.

f : x → 2/x ,x ∈ N

A partial function can be used to model an iteration or infinite loops.

f (x) : if (x==0) then 1 else f(x)

kr chowdhary TOC 10/ 16

Strings

a,b,c ,d , ... for individual alphabets

x ,y ,z ,w , ... for variable names for strings

We use symbol Σ for alphabet set for languages, e.g. Σ = {a,b}.

Set of all strings on the alphabet set Σ are represented by Σ∗

(Kleene Star).

Strings have only one operation:Concatenation. E.g., x ◦ y ,
ε ◦ x = x ◦ ε = x

Semigraoups are algebraic systems which are closed on some binary
operation, and have the property of associativity. For example,
〈S ,∗〉, such that for a,b ∈ S , there is a∗b ∈ S .

The semigroup is an algebra. It can be helpful in mapping all the
string operations in computer to this algebra so that they can be
formally treated, without technology boundaries of computers.

Monoid is semigroup with a neutral element. E.g., 〈M ,⊗,1〉 is a
Monoid with multiplication operation.

kr chowdhary TOC 11/ 16

Languages

language: set of words (or strings) defined over some alphabet.
These words are simpler form of sentences. For example,
{aab,bba,abbbb,ε,baaa},{ε,a,bbbb,aaa},φ are the languages over
the alphabet set Σ = {a,b}.

{0,1,00,01,10,11,000,001, . . .} is an infinite language over
Σ = {0,1}, which contains all the binary words.

L1 = {w ∈ Σ∗|w has property P}

L2 = {}; language with no sentences

Lε = {ε}; language with single null sentence

Let Σ = {a,b}, then Σ∗ = {ε,a,b,aa,ab,ba,bb,aaa, . . .}

L3 = {a,ab,ba,aaa} is finite language

L4 = {ap| p is prime}, L5 = {aibi |i ∈N}

L3,L4,L5 ⊆ Σ∗.

L6 = {aibic i |i ∈ N}

kr chowdhary TOC 12/ 16

Representation of Languages

Strings oveer Σ∗ are countably infinite. Say N

Languages over Σ∗ are 2|Σ
∗|, which is uncountably infinite, say N.

Think of the mapping, f : N→N. It is not bijection, as N> N. ∴,
some languages cannot be represented ! (what ever tools, and
methods may be used. Also, it cannot be possible to design
machines to recognize some languages, what ever may be
advancement of technology or science!)

Algorithmic problems:

A : Σ∗
1 →Σ∗

2; A is an algorithm which maps input strings to output,
in some complex manner.

if ∀x A(x) = B(x),∴ A≡ B, i.e., if two algorithms A and B produce
same output for same input, then they are equal.

kr chowdhary TOC 13/ 16

Operations on Languages

Let L1,L2 be languages over the same alphabet Σ, then there are
following operations on L1,L2:

L1∪L2 = {w |w ∈ L1 or w ∈ L2}

L1 ◦L2 = {w = xy |x ∈ L1,y ∈ L2}

L1 = {w ∈ Σ∗|w /∈ L1}

Lk1 = (L1 ◦L1) . . .L1
︸ ︷︷ ︸

, k-times, with L01 = {ε}

L∗1 = {w ∈ Σ∗|∃k ≥ 0,w ∈ Lk1}. This is called Kleene Star of
language L1.

L+1 = {w ∈Σ∗|∃k ≥ 1,w ∈ Lk1}.

kr chowdhary TOC 14/ 16

Conclusion

By study of theory of computation, we reach to important
conclusions in computation, like from thermodynamic we conclude
that perpetual machines cannot be made

The course gives treatment to the subject, independent of
technology.

What problems we can solve by computers?
1 Those, that produce a definite output: e.g., sorting the numbers
2 Those that produce Y/N : Called Membership Problem, e.g., Is

x ∈ A?
3 Another, e.g., given a C program, to determine whether it will halt

on so and so given input? (Halting Problem) - unsolvable.

kr chowdhary TOC 15/ 16

Bibliography

John C. Martin, ”Introduction to Languages and Theory of
Computation”, McGraw-Hill.

Mishra and Chandrashekharan, ”Theory of Computer Science
(Automata, Languages, and Computation) ”,PHI, India

Sipster, ”Introduction to Theory of Computation”, Thompson Press.

John E. Hopcroft, Rajeev Motwani, Jeffrey D. Ullman, ”Introduction
to Automata Theory, Languages, and Computation”, Pearson Press,
India.

Christos H. Papadimitriou and Harry Lewis, ”Elements of the Theory
of Computation (2nd Edition)”, Pearson Press, India.

kr chowdhary TOC 16/ 16

