Turing Machine Extensions, and Enumerators

Prof. (Dr.) K.R. Chowdhary *Email: kr.chowdhary@iitj.ac.in*

Formerly at department of Computer Science and Engineering MBM Engineering College, Jodhpur

Monday 10th April, 2017

Ways to Extend Turing Machines

Many variations have been proposed:

- Multiple tape Turing machine
- Multiple track Turing machine
- Two dimensional Turing machine
- Multidimensional Turing machine
- Two-way infinite tape
- Non-determinic Turing machine
- Combinations of the above
- Theorem: The operations of a TM allowing some or all the above extensions can be simulated by a standard TM. The extensions do not give us machines more powerful than the TM.
- The extensions are helpful in designing machines to solve particular problems.

Variants of TM:

- For example, in two tape Turing machine, each tape has its own read-write head, but the state is common for all tapes and all heads.
- In each step (transitions) TM reads symbols scanned by all heads, depending on head position and current state, each head writes, moves R or L, and control-unit enter into new state.
- Actions of heads are independent of each other.
- Tape position in two tapes: [x, y], x in first tape, and y in second, and δ is given by:

$$\delta(q_i, [x, y]) = (q_j, [z, w], d, d), \quad d \in \{L, R\}$$

$$\frac{\delta | a, a | B, a | a, B | B, a | a, B | B, B$$

- A standard TM is multi-tape TM with single tape.
- Example: These multi-tape TMs are better suited for specific applications, e.g., copying string from one tape to another tape. However, their time-complexity remains **P** only.

Multiple Tape TM

A transition in a multi-tape Turing machine, for $k \ge 1$ number of tapes:

$$\delta: (Q-H) \times \Gamma^k \to Q \times \Gamma^k \times \{L, R\}^k$$

$$\delta(q_i, a_1, \dots, a_k) = (q_j, (b_1, \dots, b_k), (d_1, \dots, d_k))$$

The steps to carry out a transition are:

- 1. change to next state;
- 2. write one symbols on each tape;
- 3. independently reposition each tape heads.

Two-tape TM to recognize language $L = \{a^n b^n \mid n \ge 0\}$

Working: with The original string w is on tape 1

- Copies the string *a*'s on tape 2.
- Solution Moves head 1 to begin of b's, and head on last a's
- Compare number of b's tape 1 with number of b's on tape 2 by moving heads in opposite directions.
- Time Complexity: 1 + n + 1 + n + 1 = O(n + 3) = O(n) = Polynomial (P) (Compare it with standard TM for same problem with complexity O(n²)

Two-tape TM to recognize language $L = \{ww^R \mid w \in \{a, b\}^*\}$

Working: with The original string w is on tape 1

- Copies the string w on tape 2.
- Moves head 1 to extreme left (rewind)
- Aligns both heads on opposite, i.e, head 1 to extreme left, head 2 to extreme right
- Compare by moving heads in opposite directions.
- Time Complexity: 1 + n + 1 + n + 1 + n + 1 = O(3n + 4) = O(n) = Polynomial (P)

Multi-Tape TM

Example: Construct 2-tape TM to recognize the language $L = \{ww | w \in \{a, b\}^*\}.$

steps:(Note: $x \in \{a, b\}$, $y \in \{a, b\}$)

- 1. Initially the string *ww* is on tape-1. Copy it to tape-2, at the end both R/W heads are at right most.
- 2. Move both heads left: Head-1, 2-steps and head-2, 1-step each time.
- Move both heads right, each one step. Head-1 moves in first w of ww and head-2 moves in second w, comparing these w in q₄. In q₃ → q₄ transition, the move 'y|y S' keeps head2 stationary.

Multiple Tape TM

Simulation of a three-tape TM M by standard TM S:

- Let the contents of a three tape TM M are: 01010B Tape 1: bold character is R/W head position aaaB Tape 2: bold character is R/W head position baB Tape 3: bold character is R/W head position
- Tape contents on simulated standard TM S: 01010#aaa#baB, # is separator for contents of 3 tapes.
- In practice, *S* leaves an extra blank before each symbol to record position of read-write heads
- S reads the symbols under the virtual heads (L to R).
- Then S makes a second pass to update the tapes according to the way the transition function of M dictates.
- If, at any point *S* moves one of the virtual heads to the right of *#*, it implies that head moved to unread blank portion of that tape. So *S* writes a blank symbol in the right most of that tape. Then continues to simulate.
 - \Rightarrow control will need a lot more states.

Multiple track TM

- The tape is divided into tracks. A tape position in *n*-track tape contains *n* symbols from tape alphabets.
- Tape position in two-track is represented by [x, y], where x is symbol in track 1 and y is in tack-2. The states, Σ, Γ, q₀, F of a two-track machine are same as for standard machine.
- A transition of a two-track machine reads and writes the entire position on both the tracks.
- δ is: δ(q_i, [x, y]) = [q_j, [z, w], d], where d ∈ {L, R}. The input for two-track is put at track-1, and all positions on track-2 is initially blank. The acceptance in multi-track is by final state.
- Languages accepted by two-track machines are Recursively Enumerable languages.

Theorem

A language is accepted by a two-track TM M if and only if it is accepted by a standard TM M'.

Proof.

• Part 1:If L is accepted by standard TM M' then it is accepted by two-track TM M also (for this, simply ignore 2nd track). Hence track content is tuple [a, B].

Part 2:

- Let $M = (Q, \Sigma, \Gamma, \delta, q_0, H)$ be two track machine. Find one equivalent standard TM M'
- Create ordered pair [x, y] on single tape machine M'.

Construct a 3-tape TM to recognize the set {a^k k is a perfect square}

- Tape 1 holds the input, tape 2 holds progressive k^2 and tape 3 the progressive k
- 2 keep $T_2 = T_3 = \varepsilon$.
- If Input is compared with T_2 , by scanning both. If both

reach to B together, accept, and terminate. Else, put a at T_2 and T_3 .

• If $T_2 \equiv T_1$, accept and terminate, else if $|T_2| > |T_1|$, reject input, else $(T_2 < T_1)$,

append T_2 with $2 \times T_3$ and append a to T_2 (this changes content of T_2 from a^{k^2} to a^{k^2+2k+1}

- append a to T₃ (increment) t_3).
- go back to step 3.

Two-way infinite tape

• There is single tape M which extends from $-\infty$ to $+\infty$. One R-W head, $M = (Q, \Sigma, \delta, q_0, F)$

 \dots -3 -2 -1 0 1 2 3 \dots , is square sequence on TM, with R-W head at 0

This can be simulated by a two-tape TM:

• $M' = (Q' \cup \{q_s, q_t\}) \times \{U, D\}, \Sigma', \Gamma', f')$, where U = up tape head, D = down tape head, $\Sigma' = \Sigma, \Gamma' = \Gamma \cup \{B\}$, and

 $F' = \{[q_i, U], [q_i, D] | q_i \in F\}$. Initial state of M' is pair $[q_s, D]$. A transition from this writes B in U tape at left most position. Transition from $[q_t, D]$ returns the tape head to its original position to begin simulation of M.

• Single R-W head, but multiple tapes exists. Let the Dimensions be 2D. For each input symbol and state, this writes a symbols at current head position, moves to a new state, and R-W head moves to left or right or up or down.

Simulate it on 2-tape TM:

• copy each row of 2-D tape on 2nd tape of 2-tape TM. When 2D TM moves head L or R, move the head on 2nd-tape of two-tape also L or R. When 2D head moves up, 2nd tape of two-tape scans left until it finds *. As it scans, it writes the symbols on tape-1. Then scans and puts remaining symbols on tape-1. Now it simulates this row (on tape-1).

Nondeterministic TM (NDTM)

- NDTM has finite number of choices of moves; components are same as standard TM; may have >1 move with same input and state pair, (Q×Σ). Nondeterminism is like FA and PDA.
- A NDTM machine accepts by halting if there is at least one computation sequence that halts normally when run with input *w*.
- Example: Find if a graph of *n* nodes has a connected subgraph of *k* nodes. For this no efficient algorithm exists. A Non-exhaustive based solution is Guess and check.
 - **NDTM**: Arbitrarily choose a move when more than one possibility exists for $\delta(q_i, a)$.
 - Accept the input if there is at least one computation sequence that leads to accepting state (however, the converse is irrelevant).
- To find a NDTM for ww input, w ∈ Σ*, you need to guess the mid point. A NDTM may specify any number of transitions for a given configuration, i.e. δ: (Q − H) × Γ → subset of Q × Γ × {L, R}

С

Example: w = ucv, where *c* is preceded by or followed by *ab*, and $u, v \in \{a, b, c\}^*$

Approach: Read input a, b, c and write a, b, c respectively, and move to R in each, at start state. Then with input c, Nondeterministically decide c, a, b by moving R in three states transitions or decide c, b, a by moving L in three other states transitions (i.e., abc)

Simulation of NDTM on Standard TM

- To accomplish the transformation of a NDTM into a deterministic TM, we show that multiple computations of a single input string can be sequentially generated and examined.
- A NDTM produces multiple computations for a single string. We show that multiple computations m₁,..., m_i,..., m_k for a single input string can be sequentially generated and applied.(A computation m_i is δ(q_i, a) = [q_j, b, d], where d ∈ {L, R}.
- These computations can be systematically produced by adding the alternative transitions for each $Q \times \Sigma$ pair. Each m_i has 1:n number of transitions. If $\delta(q_i, x) = \phi$, the TM halts.
- Using the ability to sequentially produce the computations, a NDTM M can be simulated by a 3-tape deterministic TM M'.
- Every nondeterministic TM has an equivalent 3-tape Turing machine, which, in turn, has an equivalent standard TM (1-tape Turing machine).

Simulation of a NDTM M by 3-tape TM M'

Simulation of NDTM by 3-tape DTM:

• Approach: A NDTM may have more than one transition for same input (state × input symbol) pair. We may call these configurations as $c_1...c_n$.

• If the computation sequence $m_1, \ldots, m_i, \ldots, m_k$, leads to solution, then for a NDTM these are the steps for solution, where

 $m_i \in \{c_1, \ldots, c_n\}$. For exhaustive solution, complexity is decided by tree height k, hence complexity is k^n .

- To perform the simulation of *M* on *M'*, all the computation sequence, for each (state, input) pair are systematically generated.
- The tree created can be searched in DFS or BFS, until accepting/halting state is reached.
- However, DFS is not preferred because, it may go infinity. Therefore, the generated states are searched in BFS.

Simulation of a NDTM M by 3-tape TM m'

- Tape-1 of *M*' stores the input string, tape-2 simulates the tape of *M*, and tape-3 holds sequence $m_1, \ldots, m_i, \ldots, m_k$ to guide the simulation.
- Computation of M' consists following:
 - A sequence of inputs $m_1, \ldots, m_i, \ldots, m_k$, where each i, (i = 1 : n) is written on tape-3. $(m_i \in \{c_1, \ldots, c_n\})$
 - Input string is copied on tape-2.
 - Computation of *M* defined by sequence on tape-3 is simulated on tape-2.
 - If simulation halts prier to executing k transitions, computations of M' halts and accepts input, else
 - the Next sequence is generated on tape-3 and computation continues on tape-2.

Simulation of a NDTM M by 3-tape TM m'

Let us consider the NDTM M given below to be simulated on 3-tape DTM M'. Let us assume that input string to NDTM is w = acab.

Since, there are maximum three transitions at any (state, input) pair, we take set $\{c_1, c_2, c_3\}$ as $\{1, 2, 3\}$. In case there is single transition only, we repeat that to make that count equal to 3. The following table shows all pairs of $(q \times \sigma)$, where $\sigma \in Sigma$.

$$\begin{array}{cccc} \delta(q_0,B) & \begin{pmatrix} 1 & q_1, B, R \\ & & \begin{pmatrix} 2 & q_1, B, R \\ & & & \end{pmatrix} & \begin{pmatrix} 2 & q_1, B, R \\ & & & & \end{pmatrix} & \begin{pmatrix} 2 & q_1, B, R \\ & & & & \end{pmatrix} & \begin{pmatrix} 2 & q_3, a, R \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & & \\ & & & & & & \\ & & &$$

Simulation of a NDTM M by 3-tape TM m'

To simulate the NDTM on a 3-tape TM, following $m_1, \ldots, m_i, \ldots, m_k$ sequences are possible. All possible sequences are enumerated. The sequence numbers are given as per the table, given in the previous slide. Each sequence indicates a transition from one ID to next ID of the 3-tape DTM.

q ₀ BacabB 1	q ₀ BacabB 2
$\vdash Bq_1acabB$ 1	$\vdash Bq_1acabB$ 2
$\vdash Baq_1cabB$ 2	⊢ Baq1cabB 3
<i>⊢ Bacq</i> ₂ <i>abB</i> 1	⊢ Bq₅acabB
<i>⊢ Bacaq</i> ₃ bB 1	
$\vdash Bacabq_4B$	
sequence=	sequence
(1, 1, 2, 1, 1)	(2,2,3)
	$\begin{array}{c} q_0BacabB & 1 \\ \vdash Bq_1acabB & 1 \\ \vdash Baq_1cabB & 2 \\ \vdash Bacq_2abB & 1 \\ \vdash Bacaq_3bB & 1 \\ \vdash Bacabq_4B \\ \text{sequence}= \\ (1,1,2,1,1) \end{array}$

Therefore, what is required to generate the sequences as above: (1,1,1,1,1), then (1,1,2,1,1), then (2,2,3), in lexicographic order. We note, that the sequence (1,1,2,1,1) is accepting sequence; the moment such generated sequence of configurations is simulated on tape-2, the machine is halted.

Simulation of a NDTM: Generation of lexicographic sequences

Sequence generator is a TM, with no input, but output - sequence, whose generation is interleaved with the computation of the simulation of NDTM on tape-2 of M'. The figure below shows the sequence generation.

The simulation of NDTM M on a 3-tape DTM M' is as follows: (1) Input string w is put on tape 1, (2) w is copied on tape 2, (3) next sequence $(m_1..m_k)$ is generated on tape 3, (4) tape 2 is simulated for the moves (sequence) available on tape 3. (5) If any move leads to halting state, the machine is halted and w is accepted. (6) process is repeated from step 2. Note that sequence generation is non-terminating. Hence, if $w \notin L$, the process will continue indefinitely.

- TM can also be designed to enumerate a language. Such machines produce the exhaustive list of of string of the language, progressively longer and longer.
- Enumeration has no input, and its computation continues indefinitely if the language is infinite, as well as when it is finite.
- For enumeration, a TM of tape k ≥ 2 is used, tape 1 is output tape, which would hold all the generated strings, separated by #, and other tapes are working tapes.
- Output tape 1 has: $B \# u_1 \# u_2 \# \dots \# u_i \# \dots$, where $u_i \in L$.
- Tape head 1 always moves R, S, while others may move R, L, S.

Example

Enumerate all the strings for $L = \{a^n b^n c^n \mid n \ge 0\}$

Solution. The L can be generated by two-tape TM E with following steps: (1) Write ## on tape 1 and 2 for ε . (2) add a on tape 2, (3) copy a equal to size of tape 2 on tape 1, then by same size the b is written on tape 1, then by same size c is written tape 1, followed with # (4) goto step 2.

The language $L = \{a^n b^n c^n \mid n \ge 0\}$ is suppose recognized by TM *M*. Let the enumerator *E* generates all the strings of *L*.

Theorem

If L is enumerated by a TM then L is recursively enumerable.

Proof.

Let L is enumerated by a TM E of k tapes. We add a tape new tape k+1 to it. Let this new machine is M. Consider a string $w \in L$, and we write it on k+1th tape. Every time # is written on tape 1 by E, and its starts generating new string u_i , simultaneously it is compared with w on tape k+1, if found equal, M halts, otherwise the process of generating and compare is repeated for next string. Since, when $w \in L$ machine M halts else continues indefinitely, L is

recursively enumerable.

For enumeration it is necessary that lexicographic order (lo) of strings is generated. We can generate all the strings on alphabet $\Sigma = \{a_1, ..., a_n\}$ in lexicographic order using recursion as follows:

$$lo(\varepsilon) = 0$$
, $lo(a_i) = i$, $i = 1, n$
 $lo(a_i u) = i \cdot n^{lenth(n)} + lo(u)$

Theorem

For any alphabet Σ , there is TM E_{Σ^*} that enumerates Σ^* in lexicographic order.

Proof.

Let M be the TM that accepts L. The lexicographic ordering produces listing: ε , u_1 , u_2 , ..., $\in \Sigma^*$. We Construct a table with columns as strings in Σ^* and rows as natural numbers, in the order as shown.

25/26

The [i,j] entry in the table means "run the M for input u_i for j steps. The machine E is built to enumerate L such that enumeration of the ordered pairs are interleaved with the computation of M. The computation of E is a loop:

- generate an ordered pair [i, j]
- run a simulation of M with input u_i for j transitions or until the simulation halts.
- **(a)** If M accepts, write u_i on the output tape
- continue with step 1.

If $u_i \in L$, the computation of M with input u_i halts and accepts after k transitions, for some number k.

Thus, u_i will be written on output tape of E when ordered pair [i, j] is processed. The 2nd element of k ensures that simulation is terminated after k steps. Consequently, no non-nonterminating computation are allowed, and each string of Σ^* is examined.

This is one more proof of the theorem : "If a language is enumerated by TM then it is RE".