Recursive and Recursively Enumerable Languages

Prof. (Dr.) K.R. Chowdhary

Email: kr.chowdhary@iitj.ac.in

Formerly at department of Computer Science and Engineering
MBM Engineering College, Jodhpur

Monday 10th April, 2017
Defining R and RE languages

- **Recursive:** They allow a function to call itself. Or, a recursive language is a recursive subset in the set of all possible words over alphabet Σ of that language.

- Non-recursive should not be taken as simpler version of computation, i.e., e.g., obtaining factorial value without recursion method.

- Regular languages ⊆ context free languages ⊆ context sensitive languages ⊆ recursive languages ⊆ recursive enumerable languages.

- A language is **Recursively Enumerable (RE)** if some Turing machine accepts it.
 - A TM M with alphabet Σ accepts L if $L = \{ w \in \Sigma^* | M \text{ halts with input } w \}$
 - Let L be a RE language and M the Turing Machine that accepts it. \therefore, for $w \in L$, M halts in final state. For $w \notin L$, M halts in non-final state or loops for ever.

- A language is **Recursive (R)** if some Turing machine M recognizes it and halts on every input string, $w \in \Sigma^*$. Recognizable = Decidable. Or A language is recursive if there is a membership algorithm for it.

- Let L be a recursive language and M the Turing Machine that accepts (i.e. recognizes) it. For string w, if $w \in L$, then M halts in final state. If $w \notin L$, then M halts in non-final state. (halts always!)
Every *Recursive* language is *RE*. ∴, if M is *TM* recognizing L, the M can be easily modified so its accepts L.

The languages which are non-RE cannot be recognized by TM. These are diagonal (L_d) languages of the diagonal of $x - y$, where x_i is language string w_i, and y_i is TM M_i.

Language $< M, w >$, where M is *TM* and w is string, is not *RE* language, since its generalized form is not Turing decidable (undecidability proof), ∴, it is *non-RE* language.
Every is recursive language can be enumerated

Theorem

If a language L is recursive then there exists an enumeration procedure for it.

Proof.

- If $\Sigma = \{a, b\}$, then M can enumerate strings:

 $a, b, aa, ab, ba, bb, aaa, \ldots$

 --- Enumerating machine ---

- Enumeration procedure: M generates string w. M checks, if $w \in L$; if yes, output w else ignore w.

- Let $L = \{a, ab, bb, aaa, \ldots\}$. M output = $\{a, b, aa, ab, ba, bb, aaa, \ldots\}$; $L(M) = \{a, ab, bb, aaa, \ldots\}$; enumerated output = a, ab, bb, aaa, \ldots
Class of Languages

- recursive = decidable, their TM always halts
- recursive enumerable (semi-decidable) but not recursive = their TM always halt if they accept, otherwise halts in non-final state or loops.
- non-recursive enumerable (non-RE) = there are no TMs for them.

Recursive languages are closed under complementation.

Theorem

If L is recursive then \overline{L} is also recursive.

Proof.

- The accepting states of M are made non-accepting states of M' with no transitions, i.e., here M' will halt without accepting.
- If s is new accepting state in M', then there is no transition from this state.
- If L is recursive, then $L = L(M)$ for some TM M, that always halts. Transform M into M' so that M' accept when M does not and vice-versa. So M' always halts and accepts \overline{L}. Hence \overline{L} is recursive.
Theorem

If L *and* \overline{L} *are RE, then* L *is recursive.*

Proof.

- Let $L = L(M_1)$ and $\overline{L} = L(M_2)$. Construct a TM M that simulates M_1 and M_2 in parallel, using two tapes and two heads. If i/p to M is in L, then M_1 accepts it and halts, hence M accepts it and halts. If input to M is not in L, hence it is in \overline{L}, \therefore, M_2 accepts and halts, hence M halts without accepting. Hence M halts on every i/p and $L(M) = L$. So L is recursive.

![TM diagram](image)

Closure Properties:

Recursive languages are closed under union, concatenation, intersection and Kleene star, complement, set difference ($L_1 - L_2$).
Theorem

A language \(L \) is recursive enumerable iff there exists an enumeration procedure for it.

Proof.

- If there is an enumeration procedure, then we can enumerate all the strings, and compare each with \(w \) each time till it is found.
- If the language is RE, then we can follow an enumeration procedure to systematically generate all the strings.

while(1){
 generate()
 compare()
 if same exit()
}

Machine that accepts L
Intersection of RE and R languages

- Given a *Recursive* and a *RE* languages: Their Union is *RE*, Intersection is *RE*, Concatenation is *RE*, and Kleene’s closure is *RE*.
- if L_1 is *Recursive* and L_2 is *RE*, then $L_2 - L_1$ is *RE* and $L_1 - L_2$ is not *RE*.

Theorem
The intersection *R* and *RE* languages is *RE*.

Proof.

- Let L_1 and L_2 be languages recognized by Turing machines M_1 and M_2, respectively.
- Let a new TM M_\cap is for the intersection $L_1 \cap L_2$. M_\cap simply executes M_1 and M_2 one after the other on the same input w: It first simulates M_1 on w. If M_1 halts by accepting it, M_\cap clears the tape, copies the input word w on the tape and starts simulating M_2. If M_2 also accepts w then M_\cap accepts.
- Clearly, M_\cap recognizes $L_1 \cap L_2$, and if M_1 and M_2 halt on all inputs then also M_\cap halts on all inputs.
Theorem

The union of two Recursive languages is recursive.

Proof.

The TM corresponding to this must halt always. Let L_1 and L_2 be sets accepted by M_1 and M_2, respectively. Then $L_1 \cup L_2$ is accepted by TM M, where $x = w_1 \cup w_2$, for $w_1 \in L_1$ and $w_2 \in L_2$.

![Diagram of TM accepting union of two languages](image-url)
Closure properties . . .

Theorem
The union of two RE languages is RE.

Proof.

Let L_1 and L_2 be sets accepted by M_1 and M_2, respectively. Then $L_1 \cup L_2$ is accepted by TM M, where $x = w_1 \cup w_2$, for $w_1 \in L_1$ and $w_2 \in L_2$.

To determine if M_1 or M_2 accepts x we run both M_1 and M_2 simultaneously, using a two-tape TM M. M simulates M_1 on the first tape and M_2 on the second tape. If either one enters the final state, the input is accepted.
Summary of R and RE

- diagonal languages
 - Non-RE

- Both L and \overline{L} are recursive, then both are in the inner circle. *Palindrome* and *CFG* are recursive.
- Neither L or \overline{L} are RE, the both are outside the outer ring.
- L is RE but not recursive, and \overline{L} is *non-RE*; then first is in outer circle, and second is in outer most space.
- There are languages which are neither recursive nor RE (Ref: Countable algorithms(TM) but uncountable languages)
- Closure of recursive language in $L_1 - L_2$ follows from the fact that these set difference can be expressed in terms of intersection and complement.

Weak Result: If a language is recursive then there is an enumeration procedure.

Strong Result: A language is RE iff there is an enumeration procedure.