Recursive and Recursively Enumerable Languages

Prof. (Dr.) K.R. Chowdhary
Email: kr.chowdhary@iitj.ac.in

Formerly at department of Computer Science and Engineering
MBM Engineering College, Jodhpur

Monday $10^{\text {th }}$ April, 2017

Defining R and RE languages

- Recursive: They allow a function to call itself. Or, a recursive language is a recursive subset in the set of all possible words over alphabet Σ of that language.
- Non-recursive should not be taken as simpler version of computation, i.e., e.g., obtaining factorial value without recursion method.
- Regular languages \subseteq context free languages \subseteq context sensitive languages \subseteq recursive languages \subseteq recursive enumerable languages.
- A language is Recursively Enumerable (RE) if some Turing machine accepts it.
- A TM M with alphabet Σ accepts L if $L=\left\{w \in \Sigma^{*} \mid M\right.$ halts with input $\left.w\right\}$
- Let L be a $R E$ language and M the Turing Machine that accepts it. \therefore, for $w \in L, M$ halts in final state. For $w \notin L, M$ halts in non-final state or loops for ever.
- A language is Recursive (R) if some Turing machine M recognizes it and halts on every input string, $w \in \Sigma^{*}$. Recognizable $=$ Decidable. Or A language is recursive if there is a membership algorithm for it.
- Let L be a recursive language and M the Turing Machine that accepts (i.e. recognizes) it. For string w, if $w \in L$, then M halts in final state If $w \not \not \notin$ then M halts in non-final state (halts alwavsl)

Relation between Recursive and RE languages

- diagonal languages
- Non-RE

- Every Recursive language is $R E$. \therefore, if M is $T M$ recognizing L, the M can be easily modified so its accepts L.
- The languages which are non-RE cannot be recognized by TM. These are diagonal $\left(L_{d}\right)$ languages of the diagonal of $x-y$, where x_{i} is language string w_{i}, and y_{i} is TM M_{i}.
- Language $\langle M, w\rangle$, where M is $T M$ and w is string, is not RE language, since its generalized form is not Turing decidable (undecidability proof), \therefore, it is non-RE language.

Every is recursive language can be enumerated

Theorem
If a language L is recursive then there exists an enumeration procedure for it.

Proof.

- If $\Sigma=\{a, b\}$, then M^{\prime} can enumerate strings:

$$
a, b, a a, a b, b a, b b, a a a, \ldots
$$

Enumerating machine ----------------------

alphabets

- Enumeration procedure: M^{\prime} 'generates string $w . M$ checks, if $w \in L$; if yes, output w else ignore w.
- Let $L=\{a, a b, b b, a a a, \ldots\}$. M^{\prime} output $=\{a, b, a a, a b, b a, b b, a a a$,$\} ;$ $L(M)=\{a, a b, b b, a a a, \ldots\} ;$ enumerated output $=a, a b, b b, a a a, \ldots$

Class of Languages

- recursive $=$ decidable, their $T M$ always halts
- recursive enumerable (semi-decidable) but not recursive $=$ their $T M$ always halt if they accept, otherwise halts in non-final state or loops.
- non-recursively enumerable (non-RE) $=$ there are no $T M s$ for them.

Recursive languages are closed under complementation.
Theorem
If L is recursive then \bar{L} is also recursive.
Proof.

- The accepting states of M are made non-accepting states of M^{\prime} with no transitions, i.e., here M^{\prime} will halt without accepting.
- If s is new accepting state in M^{\prime}, then there is no transition from this state.
- If L is recursive, then $L=L(M)$ for some $T M M$, that always halts.

Transform M into M^{\prime} so that M^{\prime} accept when M does not and vice-versa. So M^{\prime} always halts and accepts \bar{L}. Hence \bar{L} is recursive.
M^{\prime}

	accept
kr chowdhary	accept
TOC	$5 / 11$

Theorem Proof

Theorem
If L and \bar{L} are $R E$, then L is recursive.
Proof.

- Let $L=L\left(M_{1}\right)$ and $\bar{L}=L\left(M_{2}\right)$. Construct a TM M that simulates M_{1} and M_{2} in parallel, using two tapes and two heads. If i / p to M is in L, then M_{1} accepts it and halts, hence M accepts it and halts. If input to M is not in L, hence it is in $\bar{L}, \therefore, M_{2}$ accepts and halts, hence M halts without accepting. Hence M halts on every i / p and $L(M)=L$. So L is recursive .

TM M

Closure Properties:

Recursive languages are closed under union, concatenation, intorcection and Kloono ctar comploment cot difforonco $\left(I--l_{6}\right)_{\text {TOC }}^{11}$

RE Language

Theorem

A language L is recursive enumerable iff there exists an enumeration procedure for it.

Proof.

- If there is an enumeration procedure, then we can enumerate all the strings, and compare each with w each time till it is found.
- If the language is RE, then we can follow an enumerature procedure to systematically generate all the strings.


```
while(1){
Machine that accepts L
    generate()
    compare()
    if same exit()
}
```


Intersection of RE and R languages

- Given a Recursive and a $R E$ languages: Their Union is $R E$, Intersection is $R E$, Concatenation is $R E$, and Kleene's closure is $R E$.
- if L_{1} is Recursive and L_{2} is $R E$, then $L_{2}-L_{1}$ is $R E$ and $L_{1}-L_{2}$ is not $R E$.

Theorem

The intersection R and $R E$ languages is $R E$.

Proof.

- Let L_{1} and L_{2} be languages recognized by Turing machines M_{1} and M_{2}, respectively.
- Let a new $T M M_{\cap}$ is for the intersection $L_{1} \cap L_{2}$. M_{\cap} simply executes M_{1} and M_{2} one after the other on the same input w: It first simulates M_{1} on w. If M_{1} halts by accepting it, $M \cap$ clears the tape, copies the input word w on the tape and starts simulating M_{2}. If M_{2} also accepts w then M_{\cap} accepts.
- Clearly, M_{\cap} recognizes $L_{1} \cap L_{2}$, and if M_{1} and M_{2} halt on all inputs then also M_{\cap} halts on all inputs.

closure properties . . .

Theorem

The union of two Recursive languages is recursive.

Proof.

- The TM corresponding to this must halt always. Let L_{1} and L_{2} be sets accepted by M_{1} and M_{2}, respectively. Then $L_{1} \cup \bigsqcup_{2}$ is accepted by $T M M$, where $x=w_{1} \cup w_{2}$, for $w_{1} \in L_{1}$ and $w_{2} \in L_{2}$.

Closure properties . . .

Theorem

The union of two $R E$ languages is $R E$.

Proof.

- Let L_{1} and L_{2} be sets accepted by M_{1} and M_{2}, respectively. Then $L_{1} \cup \bigsqcup_{2}$ is accepted by $T M M$, where $x=w_{1} \cup w_{2}$, for $w_{1} \in L_{1}$ and $w_{2} \in L_{2}$.
- To determine if M_{1} or M_{2} accepts \times we run both M_{1} and M_{2} simultaneously, using a two-tape TM M. M simulates M_{1} on the first tape and M_{2} on the second tape. If either one enters the final state, the input is accepted.

TM M

Summary of R and $R E$

- diagonal languages
- Non-RE

- Both L and \bar{L} are recursive, then both are in the inner circle. Palindrome and CFG are recursive.
- Neither L or \bar{L} are $R E$, the both are outside the outer ring.
- L is $R E$ but not recursive, and \bar{L} is non- $R E$; then first is in outer circle, and second is in outer most space.
- There are languages which are neither recursive nor RE (Ref: Countable algorithms(TM) but uncountable languages)
- Closure of recursive language in $L_{1}-L_{2}$ follows from the fact that these set difference can be expressed in terms of intersection and complement.
- Weak Result: If a language is recursive then there is an enumeration procedure.

