Recursive and Recursively Enumerable Languages

Prof. (Dr.) K.R. Chowdhary *Email: kr.chowdhary@iitj.ac.in*

Formerly at department of Computer Science and Engineering MBM Engineering College, Jodhpur

Monday 10th April, 2017

Defining R and RE languages

- Recursive: They allow a function to call itself. Or, a recursive language is a recursive subset in the set of all possible words over alphabet Σ of that language.
- Non-recursive should not be taken as simpler version of computation, i.e., e.g., obtaining factorial value without recursion method.
- Regular languages ⊆ context free languages ⊆ context sensitive languages ⊆ recursive languages ⊆ recursive enumerable languages.
- A language is Recursively Enumerable (RE) if some Turing machine accepts it.
- A TM M with alphabet Σ accepts L if $L = \{w \in \Sigma^* | M \text{ halts with input } w \}$
- Let *L* be a *RE* language and *M* the Turing Machine that accepts it. \therefore , for $w \in L$, *M* halts in final state. For $w \notin L$, *M* halts in non-final state or *loops for ever*.
- A language is Recursive (R) if some Turing machine M recognizes it and halts on every input string, w ∈ Σ*. Recognizable = Decidable. Or A language is recursive if there is a membership algorithm for it.
- Let L be a recursive language and M the Turing Machine that accepts (i.e. recognizes) it. For string w, if w ∈ L, then M halts in final state If w ∉ L then M halts in non-final state (halts always])

Relation between Recursive and RE languages

- Every *Recursive* language is *RE*. ..., if *M* is *TM* recognizing *L*, the *M* can be easily modified so its accepts *L*.
- The languages which are non-RE cannot be recognized by TM. These are diagonal (L_d) languages of the diagonal of x - y, where x_i is language string w_i , and y_i is TM M_i .
- Language < M, w >, where M is TM and w is string, is not RE language, since its generalized form is not Turing decidable (undecidability proof), ∴, it is non-RE language.

Theorem

If a language L is recursive then there exists an enumeration procedure for it.

Proof.

• If $\Sigma = \{a, b\}$, then *M*'can enumerate strings:

 $a, b, aa, ab, ba, bb, aaa, \ldots$

Enumerating machine -----

- Enumeration procedure: M'generates string w. M checks, if w ∈ L; if yes, output w else ignore w.
- Let *L* = {*a*, *ab*, *bb*, *aaa*,...}. *M*´output = {*a*, *b*, *aa*, *ab*, *ba*, *bb*, *aaa*, }; *L*(*M*) = {*a*, *ab*, *bb*, *aaa*,...}; enumerated output = *a*, *ab*, *bb*, *aaa*,...

Class of Languages

- recursive = decidable, their TM always halts
- recursive enumerable (semi-decidable) but not recursive = their *TM* always halt if they accept, otherwise halts in non-final state or loops.
- non-recursively enumerable (*non-RE*) = there are no *TMs* for them.

Recursive languages are closed under complementation.

Theorem

If L is recursive then \overline{L} is also recursive.

- The accepting states of M are made non-accepting states of M' with no transitions, i.e., here M' will halt without accepting.
- If s is new accepting state in M', then there is no transition from this state.
- If L is recursive, then L = L(M) for some TM M, that always halts. Transform M into M ´so that M ´ accept when M does not and vice-versa. So M ´ always halts and accepts L. Hence L is recursive.

Theorem Proof

Theorem If L and \overline{L} are RE, then L is recursive.

Proof.

• Let $L = L(M_1)$ and $\overline{L} = L(M_2)$. Construct a *TM M* that simulates M_1 and M_2 in parallel, using two tapes and two heads. If i/p to *M* is in *L*, then M_1 accepts it and halts, hence *M* accepts it and halts. If input to *M* is not in *L*, hence it is in $\overline{L}, \therefore, M_2$ accepts and halts, hence *M* halts without accepting. Hence M halts on every i/p and L(M) = L. So *L* is recursive.

тм м

Closure Properties:

Recursive languages are closed under union, concatenation, intersection and Kleene star, complement, set difference (1 - 1 -)

Theorem

A language L is recursive enumerable iff there exists an enumeration procedure for it.

- If there is an enumeration procedure, then we can enumerate all the strings, and compare each with *w* each time till it is found.
- If the language is RE, then we can follow an enumerature procedure to systematically generate all the strings.

Intersection of RE and R languages

- Given a *Recursive* and a *RE* languages: Their Union is *RE*, Intersection is *RE*, Concatenation is *RE*, and Kleene's closure is *RE*.
- if L_1 is *Recursive* and L_2 is *RE*, then $L_2 L_1$ is *RE* and $L_1 L_2$ is not *RE*.

Theorem

The intersection R and RE languages is RE.

- Let L₁ and L₂ be languages recognized by Turing machines M₁ and M₂, respectively.
- Let a new TM M_{\cap} is for the intersection $L_1 \cap L_2$. M_{\cap} simply executes M_1 and M_2 one after the other on the same input w: It first simulates M_1 on w. If M_1 halts by accepting it, M_{\cap} clears the tape, copies the input word w on the tape and starts simulating M_2 . If M_2 also accepts w then M_{\cap} accepts.
- Clearly, M_∩ recognizes L₁ ∩ L₂, and if M₁ and M₂ halt on all inputs then also M_∩ halts on all inputs.

Theorem

The union of two Recursive languages is recursive.

Proof.

The TM corresponding to this must halt always. Let L₁ and L₂ be sets accepted by M₁ and M₂, respectively. Then L₁ ∪ L₂ is accepted by TM M, where x = w₁ ∪ w₂, for w₁ ∈ L₁ and w₂ ∈ L₂.

Closure properties ...

Theorem

The union of two RE languages is RE.

- Let L_1 and L_2 be sets accepted by M_1 and M_2 , respectively. Then $L_1 \cup L_2$ is accepted by TM M, where $x = w_1 \cup w_2$, for $w_1 \in L_1$ and $w_2 \in L_2$.
- To determine if M_1 or M_2 accepts x we run both M_1 and M_2 simultaneously, using a two-tape TM M. M simulates M_1 on the first tape and M_2 on the second tape. If either one enters the final state, the input is accepted.

тм м

Summary of *R* and *RE*

- Both L and \overline{L} are recursive, then both are in the inner circle. *Palindrome* and *CFG* are recursive.
- Neither L or \overline{L} are RE, the both are outside the outer ring.
- *L* is *RE* but not recursive, and \overline{L} is *non-RE*; then first is in outer circle, and second is in outer most space.
- There are languages which are neither recursive nor RE (Ref: Countable algorithms(TM) but uncountable languages)
- Closure of recursive language in $L_1 L_2$ follows from the fact that these set difference can be expressed in terms of intersection and complement.
- Weak Result: If a language is recursive then there is an enumeration procedure.
- **Stuang Doculty** A language is DE iff there is an Enumeration kr chowdhary TOC