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21.1 Problem Reduction

Let there are problems A and B, with A not harder than B, is represented as A ≤ B. Now, if A is undecidable,
then B is also undecidable. Similarly, if B is decidable, then A is also decidable. Thus, given a hardness
relation between two problems, and given one is hard or soft, we can conclude the hardness or softness of
other problem.

The relation A ≤ B means that problem A can be solved using the solution to B. To be precise, to get
solution of A for the instance w, what we need to do is to modify w some how to obtain w′ and then obtain
solution to B for the instance w′, so that the solution of B for w′ turns out to be the solution of A for w
also. In this case, “A ≤ B” means that problem “A is reducible to problem B”. Further, the correspondence
between w and w′ is a function f such that w′ = f(w).

Definition 21.1 Let A and B are Yes/No problems, and A ≤ B if there is a function f : Σ∗ → Σ∗, such
that,

A(w) = Y es ⇔ B(f(w)) = Y es,

for all w ∈ Σ∗. The function f is called reduction of A to B. When A and B are membership problems of
language, language A is said to be reducible to language B, where languages are thought to be membership
problems.

Whenever A and B are languages or problems, if reduction A ≤ B is computable by a TM, A is said to
be mapping reducible to B, denoted by A ≤mred B. Similarly, if the reduction is computable by a TM in
polynomial time, we say A ≤P B. Since, all the polynomial problems are computable, A ≤P B is simply
written as A ≤ B. In this reduction by TM using a reduction function f : Σ∗ → Σ∗, is polynomial if there
exists integers k and m such that for w ∈ Σ∗, f(w) is computed in k|w|m steps.

There is yet another concept of reducibility, called Turing reducibility. The Turing reducibility is defined in
terms of an Oracle. An Oracle is a device, that is equipped to a TM: when the TM asks an Oracle whether
any string w is member of a certain language, say B, the oracle answers it Yes/No to the TM depending on
whether w ∈ B or w /∈ B. Such a TM which has capability to query an oracle about membership, is called
“Oracle TM”, and denoted by MB. To be specific, a Oracle TM queries an oracle by placing a string on a
special oracle tape and then obtain Yes/No from Oracle in a single computation step.

A language A is Turing reducible to B if there exists an oracle TM with an oracle of B that decides A.
This is denoted by A ≤Turing B. This Turing reducibility can be thought of as a generalization of mapping
reducibility.

If A ≤ B holds for languages A and B, then,
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Figure 21.1: Reduction concept explained by sets.
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Figure 21.2: Reduction concept explained by Turing machine.

w ∈ A ⇔ f(w) ∈ B,

where f is reduction (see fig. 21.1).

The figure 21.2 illustrates how to construct a Turing machine that decides the membership problem for
language A by using the Turing machine that decides the membership problem for language B.

Theorem 21.2 (a) If A ≤ B and B ≤ C are mappings for problem A,B,C, then show that A ≤ C. (Note
A ≤ B is called mapping reducibility). (b) Also, if A ≤P B and B ≤P C, then show that A ≤P C.

Proof. (a) Let A ≤ B and B ≤ C with reduction function f, g respectively. The g(f(w)) is reduction for
A ≤ C. This is possible as follows: For any input w to A,

A(w) = yes ⇔ B(f(w)) = Y es, forA ≤ B

⇔ c(g(f(w))) = Y es, for B ≤ C

Also, if f and g are computed by Turing machines Mf and Mg, respectively, then g(f(w)) can be computed
by first converting input w to f(w) by Mf then feeding f(w) as input to Mg to obtain g(f(w)) as output.
Let the TM Mgf computes this reduction of A ≤ C.

(b) For polynomial time reducibility, suppose f and g are computed by TM Mf and Mg in time ank and bnl,
respectively, where the input to A is |w| = n and a, b, k, l are integer constants.

Then, since the length of an output is obviously upper bounded by the steps of Mf , we have |f(w)| ≤ ank.
So the steps of Mg are upper bounded by b|f(w)| ≤ b(ank)l = balnkl. Thus, Mgf computes the deduction
g(f(w)) in at most ank + balnkl steps or time, which is in polynomial. This completes the proof.

Theorem 21.3 (a) If language B is decidable and A ≤ B holds, then A is also decidable. (b) If B is
computable in polynomial time, and A ≤ B holds, then A is computable in polynomial time.
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Proof: (a) Let the reduction A ≤ B is done by function f and corresponding Turing machine is denoted by
Mf . Let TM to compute B be denoted by MB.

Having computed B, the A is computed in similarly in (a) and (b), by TM MA as follows:

1. Input w,

2. run TM Mf on input w and yield f(w) as output,

3. run TM MB on input f(w) and get its output as output of MA.

As per the definition, TM MA decides A. Hence, if f and B are computable in polynomial time, then A is
also computable in polynomial time. This proves the theorem.

Theorem 21.4 If A ≤P B and B ∈ P , then A ∈ P .

proof: Let M be polynomial time algorithm deciding B, and f be polynomial time reduction from A to B.
We describe polynomial time algorithm for M ′ for A as follows:

M ′ = Input w, step 1. compute f(w) on TM R (reducer for f), step 2. Run M on input f(w). Therefore,
M ′ is polynomial because each of above steps are polynomial (Note: Composition of two polynomial functions
is polynomial).


