
Theory of computation Fall 2015

Lecture 21: Problem Reduction

Faculty: K.R. Chowdhary : Professor of CS

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications.
They may be distributed outside this class only with the permission of the faculty.

21.1 Problem Reduction

Let there are problems A and B, with A not harder than B, is represented as A ≤ B. Now, if A is undecidable,
then B is also undecidable. Similarly, if B is decidable, then A is also decidable. Thus, given a hardness
relation between two problems, and given one is hard or soft, we can conclude the hardness or softness of
other problem.

The relation A ≤ B means that problem A can be solved using the solution to B. To be precise, to get
solution of A for the instance w, what we need to do is to modify w some how to obtain w′ and then obtain
solution to B for the instance w′, so that the solution of B for w′ turns out to be the solution of A for w
also. In this case, “A ≤ B” means that problem “A is reducible to problem B”. Further, the correspondence
between w and w′ is a function f such that w′ = f(w).

Definition 21.1 Let A and B are Yes/No problems, and A ≤ B if there is a function f : Σ∗ → Σ∗, such
that,

A(w) = Y es ⇔ B(f(w)) = Y es,

for all w ∈ Σ∗. The function f is called reduction of A to B. When A and B are membership problems of
language, language A is said to be reducible to language B, where languages are thought to be membership
problems.

Whenever A and B are languages or problems, if reduction A ≤ B is computable by a TM, A is said to
be mapping reducible to B, denoted by A ≤mred B. Similarly, if the reduction is computable by a TM in
polynomial time, we say A ≤P B. Since, all the polynomial problems are computable, A ≤P B is simply
written as A ≤ B. In this reduction by TM using a reduction function f : Σ∗ → Σ∗, is polynomial if there
exists integers k and m such that for w ∈ Σ∗, f(w) is computed in k|w|m steps.

There is yet another concept of reducibility, called Turing reducibility. The Turing reducibility is defined in
terms of an Oracle. An Oracle is a device, that is equipped to a TM: when the TM asks an Oracle whether
any string w is member of a certain language, say B, the oracle answers it Yes/No to the TM depending on
whether w ∈ B or w /∈ B. Such a TM which has capability to query an oracle about membership, is called
“Oracle TM”, and denoted by MB. To be specific, a Oracle TM queries an oracle by placing a string on a
special oracle tape and then obtain Yes/No from Oracle in a single computation step.

A language A is Turing reducible to B if there exists an oracle TM with an oracle of B that decides A.
This is denoted by A ≤Turing B. This Turing reducibility can be thought of as a generalization of mapping
reducibility.

If A ≤ B holds for languages A and B, then,

21-1

21-2 Lecture 21: Problem Reduction

A

Σ∗

B

f(v)v

f(u)u

Σ∗

Figure 21.1: Reduction concept explained by sets.

w
w

f(w) TM that

accepts B f(w) ∈ B = true

w ∈ A = True

TM that accepts A

Figure 21.2: Reduction concept explained by Turing machine.

w ∈ A ⇔ f(w) ∈ B,

where f is reduction (see fig. 21.1).

The figure 21.2 illustrates how to construct a Turing machine that decides the membership problem for
language A by using the Turing machine that decides the membership problem for language B.

Theorem 21.2 (a) If A ≤ B and B ≤ C are mappings for problem A,B,C, then show that A ≤ C. (Note
A ≤ B is called mapping reducibility). (b) Also, if A ≤P B and B ≤P C, then show that A ≤P C.

Proof. (a) Let A ≤ B and B ≤ C with reduction function f, g respectively. The g(f(w)) is reduction for
A ≤ C. This is possible as follows: For any input w to A,

A(w) = yes ⇔ B(f(w)) = Y es, forA ≤ B

⇔ c(g(f(w))) = Y es, for B ≤ C

Also, if f and g are computed by Turing machines Mf and Mg, respectively, then g(f(w)) can be computed
by first converting input w to f(w) by Mf then feeding f(w) as input to Mg to obtain g(f(w)) as output.
Let the TM Mgf computes this reduction of A ≤ C.

(b) For polynomial time reducibility, suppose f and g are computed by TM Mf and Mg in time ank and bnl,
respectively, where the input to A is |w| = n and a, b, k, l are integer constants.

Then, since the length of an output is obviously upper bounded by the steps of Mf , we have |f(w)| ≤ ank.
So the steps of Mg are upper bounded by b|f(w)| ≤ b(ank)l = balnkl. Thus, Mgf computes the deduction
g(f(w)) in at most ank + balnkl steps or time, which is in polynomial. This completes the proof.

Theorem 21.3 (a) If language B is decidable and A ≤ B holds, then A is also decidable. (b) If B is
computable in polynomial time, and A ≤ B holds, then A is computable in polynomial time.

Lecture 21: Problem Reduction 21-3

Proof: (a) Let the reduction A ≤ B is done by function f and corresponding Turing machine is denoted by
Mf . Let TM to compute B be denoted by MB.

Having computed B, the A is computed in similarly in (a) and (b), by TM MA as follows:

1. Input w,

2. run TM Mf on input w and yield f(w) as output,

3. run TM MB on input f(w) and get its output as output of MA.

As per the definition, TM MA decides A. Hence, if f and B are computable in polynomial time, then A is
also computable in polynomial time. This proves the theorem.

Theorem 21.4 If A ≤P B and B ∈ P , then A ∈ P .

proof: Let M be polynomial time algorithm deciding B, and f be polynomial time reduction from A to B.
We describe polynomial time algorithm for M ′ for A as follows:

M ′ = Input w, step 1. compute f(w) on TM R (reducer for f), step 2. Run M on input f(w). Therefore,
M ′ is polynomial because each of above steps are polynomial (Note: Composition of two polynomial functions
is polynomial).

