Theory of computation

Lecture 21: Problem Reduction

Faculty: K.R. Chowdhary

: Professor of CS

Fall 2015

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications. They may be distributed outside this class only with the permission of the faculty.

21.1 Problem Reduction

Let there are problems A and B, with A not harder than B, is represented as $A \leq B$. Now, if A is *undecidable*, then B is also undecidable. Similarly, if B is decidable, then A is also decidable. Thus, given a hardness relation between two problems, and given one is hard or soft, we can conclude the hardness or softness of other problem.

The relation $A \leq B$ means that problem A can be solved using the solution to B. To be precise, to get solution of A for the instance w, what we need to do is to modify w some how to obtain w' and then obtain solution to B for the instance w', so that the solution of B for w' turns out to be the solution of A for w also. In this case, " $A \leq B$ " means that problem "A is reducible to problem B". Further, the correspondence between w and w' is a function f such that w' = f(w).

Definition 21.1 Let A and B are Yes/No problems, and $A \leq B$ if there is a function $f: \Sigma^* \to \Sigma^*$, such that,

$$A(w) = Yes \Leftrightarrow B(f(w)) = Yes,$$

for all $w \in \Sigma^*$. The function f is called reduction of A to B. When A and B are membership problems of language, language A is said to be reducible to language B, where languages are thought to be membership problems.

Whenever A and B are languages or problems, if reduction $A \leq B$ is computable by a TM, A is said to be mapping reducible to B, denoted by $A \leq_{mred} B$. Similarly, if the reduction is computable by a TM in polynomial time, we say $A \leq_P B$. Since, all the polynomial problems are computable, $A \leq_P B$ is simply written as $A \leq B$. In this reduction by TM using a reduction function $f : \Sigma^* \to \Sigma^*$, is polynomial if there exists integers k and m such that for $w \in \Sigma^*$, f(w) is computed in $k|w|^m$ steps.

There is yet another concept of reducibility, called *Turing reducibility*. The Turing reducibility is defined in terms of an *Oracle*. An Oracle is a device, that is equipped to a TM: when the TM asks an Oracle whether any string w is member of a certain language, say B, the oracle answers it Yes/No to the TM depending on whether $w \in B$ or $w \notin B$. Such a TM which has capability to query an oracle about membership, is called "Oracle TM", and denoted by M^B . To be specific, a Oracle TM queries an oracle by placing a string on a special oracle tape and then obtain Yes/No from Oracle in a single computation step.

A language A is Turing reducible to B if there exists an oracle TM with an oracle of B that decides A. This is denoted by $A \leq_{Turing} B$. This Turing reducibility can be thought of as a generalization of mapping reducibility.

If $A \leq B$ holds for languages A and B, then,

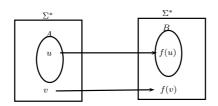


Figure 21.1: Reduction concept explained by sets.

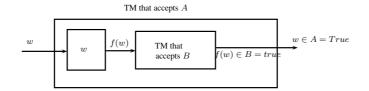


Figure 21.2: Reduction concept explained by Turing machine.

$$w \in A \Leftrightarrow f(w) \in B,$$

where f is reduction (see fig. 21.1).

The figure 21.2 illustrates how to construct a Turing machine that decides the membership problem for language A by using the Turing machine that decides the membership problem for language B.

Theorem 21.2 (a) If $A \leq B$ and $B \leq C$ are mappings for problem A, B, C, then show that $A \leq C$. (Note $A \leq B$ is called mapping reducibility). (b) Also, if $A \leq_P B$ and $B \leq_P C$, then show that $A \leq_P C$.

Proof. (a) Let $A \leq B$ and $B \leq C$ with reduction function f, g respectively. The g(f(w)) is reduction for $A \leq C$. This is possible as follows: For any input w to A,

$$\begin{split} A(w) &= yes \Leftrightarrow B(f(w)) = Yes, \ for A \leq B \\ \Leftrightarrow c(g(f(w))) = Yes, \ for B \leq C \end{split}$$

Also, if f and g are computed by Turing machines M_f and M_g , respectively, then g(f(w)) can be computed by first converting input w to f(w) by M_f then feeding f(w) as input to M_g to obtain g(f(w)) as output. Let the TM M_{af} computes this reduction of $A \leq C$.

(b) For polynomial time reducibility, suppose f and g are computed by TM M_f and M_g in time an^k and bn^l , respectively, where the input to A is |w| = n and a, b, k, l are integer constants.

Then, since the length of an output is obviously upper bounded by the steps of M_f , we have $|f(w)| \leq an^k$. So the steps of M_g are upper bounded by $b|f(w)| \leq b(an^k)^l = ba^l n^{kl}$. Thus, M_{gf} computes the deduction g(f(w)) in at most $an^k + ba^l n^{kl}$ steps or time, which is in polynomial. This completes the proof.

Theorem 21.3 (a) If language B is decidable and $A \leq B$ holds, then A is also decidable. (b) If B is computable in polynomial time, and $A \leq B$ holds, then A is computable in polynomial time.

Proof: (a) Let the reduction $A \leq B$ is done by function f and corresponding Turing machine is denoted by M_f . Let TM to compute B be denoted by M_B .

Having computed B, the A is computed in similarly in (a) and (b), by TM M_A as follows:

- 1. Input w,
- 2. run TM M_f on input w and yield f(w) as output,
- 3. run TM M_B on input f(w) and get its output as output of M_A .

As per the definition, $TM M_A$ decides A. Hence, if f and B are computable in polynomial time, then A is also computable in polynomial time. This proves the theorem.

Theorem 21.4 If $A \leq_P B$ and $B \in P$, then $A \in P$.

proof: Let M be polynomial time algorithm deciding B, and f be polynomial time reduction from A to B. We describe polynomial time algorithm for M' for A as follows:

M' = Input w, step 1. compute f(w) on TM R (reducer for f), step 2. Run M on input f(w). Therefore, M' is polynomial because each of above steps are polynomial (Note: Composition of two polynomial functions is polynomial).