Minimization of Finite Automata

Prof. (Dr.) K.R. Chowdhary
Email: kr.chowdhary@iitj.ac.in

Former Professor & Head, Department of Computer Sc. & Engineering
MBM Engineering College, Jodhpur

Monday 5th December, 2016
Each DFA defines a unique language but reverse is not true.
Larger number of states in FA require higher memory and computing power.
An NFA of n states result to 2^n maximum number of states in an equivalent DFA, therefore design of DFA is crucial.

Minimization of a DFA refers to detecting those states whose absence does not affect the language acceptability of DFA.
A reduced Automata consumes lesser memory, and complexity of implementation is reduced. This results to faster execution time, easier to analyze.
Unreachable states: If there does not exist any q', such that $\delta^*(q_0, w) = q'$, then q' is unreachable/unaccessible state.

Dead state: $\forall a, a \in \Sigma$, q is dead state if $\delta(q, a) = q$ and $q \in Q - F$.

Reachability: FA M is accessible if $\exists w, w \in \Sigma^*$, and $(q_0, w) \vdash^* (q, \varepsilon)$ for all $q \in Q$. \vdash^* is called reachability relation.

Indistinguishable states: Two states are indistinguishable if their behavior are indistinguishable with respect to each other. For example, p, q are indistinguishable if $\delta^*(p, w) = \delta^*(q, w) = r \in Q$ for all $w \in \Sigma^*$.

k-equivalence: p, q are $k-$equivalence if:

\[
\delta^*(q, w) \in F \iff \delta^*(p, w) \in F,
\]

for all $w \in \Sigma^*$ and $|w| \leq k$; written as $p \sim_k q$.

If they are equivalent for all k, then $p \sim k$. The $p \sim q$ and $p \sim_k q$ are equivalent relations.
Minimization Example

q_6 has no role, hence it can be removed.

q_1, q_5 are indistinguishable states because their behavior is identical for any string supplied at these states. These are called equivalent states, and can be merged.

In merging of two equivalent states, one state is eliminated, and the state which remains will have in addition, all incoming transitions from the removed state.

Similarly, the states q_0, q_4 are also indistinguishable states, hence they can also be merged. q_3 is dead state.
Identifier and remove all unreachable states: find all reachable states \(R \), the non-reachable states are \(Q - R \).

\[
R = \{ q_0 \}
\]

while \(\exists p, p \in R \land \exists a, a \in \Sigma \), and \(\delta(p, a) \notin R \)

\[
\{ \\
R = R \cup \delta(p, a) \\
\}
\]

Identifier and merge of indistinguishable states.

Identifier and merge of dead states.

A sequence \(w \) is accepted if \(\delta^*(q, w) \in F \)

Indistinguishability is an equivalence relation. Let \(p, q, r \in Q \). Let \(p \equiv q \), if they are indistinguishable. So,

\[
p \equiv p; \text{ reflexive}
\]

\[
p \equiv q \iff q \equiv p; \text{ symmetry}
\]

\[
p \equiv q, q \equiv r \Rightarrow p \equiv r;
\text{ transitivity, } \therefore
\]

indistinguishability is an equivalence relation.
Let $x, y \in \Sigma^*$, then x and y are said to be equivalent with respect to L (i.e. $x \approx_L y$), if for some $z \in \Sigma^*$, $xy \in L$ iff $yz \in L$.

\approx_L relation is reflexive, symmetric, and transitive, \textit{\therefore}, it is equivalence relation, which divides the language set L into equivalence classes.

For a DFA M; $x, y \in \Sigma^*$ are equivalent with respect to M, if x, y both drive M from a state q_0 to same state q',

$\delta^*(q_0, x) = q'$ and $\delta^*(q_0, y) = q'$,

\textit{\therefore}, $x \approx_M y$
(1) There is no unreachable state
(2) Indistinguishable states
 \(q_1, q_2\) are indistinguishable, and \(q_0, q_3\) are distinguishable
(3) Reduced automata: The set of distinguishable states are:
 \([s_0] = \{q_0\}, [s_1] = \{q_1, q_2\}, [s_2] = \{q_3\}\).
 Start and final states are \([s_0], [s_2]\).
The minimization algorithm is based on the following theorem:

Theorem

Let $\delta(p, a) = p'$ and $\delta(q, a) = q'$, for $a \in \Sigma$. If p', q' are distinguishable then so are p, q.

Proof.

If p', q' are distinguishable by wa then p, q are distinguishable by string w. □
Minimization Algorithm (Table Filling Algorithm)

- **Remove inaccessible/unreachable states:**
 delete $Q - Q_R$, where Q_R is set of accessible states.

- **Marking distinguishable states:**
 - Mark p, q as distinguishable, where $p \in F, q \notin F$
 - For all marked pairs p, q and $a \in \Sigma$, if $\delta(p, a), \delta(q, a)$ is already marked distinguishable then mark p, q as distinguishable.

- **Construct reduced automata:**
 - Let the set of indistinguishable(equivalent) states be sets $[p_i], [q_j], \ldots$
 such that $\forall i, j \ [p_i] \cap [q_j] = \phi$ and $[p_i] \cup [q_j] \cup \cdots = Q_R$.
 - For each $\delta(p_i, a) = q_j$, add an edge from $[p_i]$ to $[q_j]$.

- **Mark the start and final states:**
 - if $q_0 \in [p_i]$ then mark $[p_i]$ as start state,
 - if $q_f \in F$, then mark $[q_f]$ as final state.
Implementation of Table Filling Algorithm

Steps:

1. Let $M = (Q, \Sigma, \delta, s, F)$. Remove all the non-reachable states.
2. For $p \in F$ and $q \in Q - F$, put “x” in table at (p, q). This shows that p, q are distinguishable.
3. If $\exists w$, such that $\delta^*(p, w) \in F$ and $\delta^*(q, w) \notin F$, mark (p, q) as distinguishable.
4. Recursion rule: if $\delta^*(p, w) = r, \delta^*(q, w) = s$, and (r, s) were earlier proved distinguishable, then mark (p, q) also distinguishable in the table.
Consider that we want to minimize the FA shown above. The state q_3 is unreachable, so it can be dropped.

Next, we mark the distinguishable states at begin as final and non-final states. and make their entries in table as $(q_2, q_0), (q_2, q_1), (q_4, q_2), (q_5, q_2), (q_6, q_2), (q_7, q_2)$ and indicate these by mark “x.”
Next we consider the case $\delta(q_0, 1) = q_5, \delta(q_1, 1) = q_2$. Since (q_5, q_2) are already marked distinguishable, therefore, (q_0, q_1) are also distinguishable.

Like this we have filled the table shown above. The unmarked are indistinguishable states.
Only states pairs which are not marked distinguishable are \(\{q_0, q_4\} \) and \(\{q_1, q_7\} \). The automata shown in figure above is reduced automata.