Minimization of Finite Automata

Prof. (Dr.) K.R. Chowdhary

Email: kr.chowdhary@iitj.ac.in

Formerly at department of Computer Science and Engineering
MBM Engineering College, Jodhpur

Tuesday 25th August, 2015
Each DFA defines a unique language but reverse is not true.

Larger number of states in FA require higher memory and computing power during implementation.

An *nfa* of *n* states result to 2^n states in the equivalent *dfa*, therefore design of *dfa* is crucial.

Minimization of a *dfa* refers to detecting those states whose presence or absence does not affect the language acceptability of *fa*.

A reduced automata consumes lesser memory, complexity of implementation is reduced, results to faster execution time, easier to analyse.
Unreachable states: if $\delta^*(q_0, w) = q'$ is not true for any w, then q' is unreachable/unaccessible state.

Dead state: $\forall a, a \in \Sigma$, q is dead state if $\delta(q, a) = q$ and $q \in Q - F$.

Reachability: $FA M$ is accessible if $\exists w, w \in \Sigma^*$, and $(q_0, w) \vdash^* (q, \epsilon)$ for all $q \in Q$. \vdash^* is called reachability relation.

Indistinguishable states: Two states are indistinguishable if their behavior are indistinguishable with respect to each other. For example, p, q are indistinguishable if $\delta^*(p, w) = \delta^*(q, w) = r \in Q$ for all $w \in \Sigma^*$.

k-equivalence: p, q are k—equivalence if:

$$\delta^*(q, w) \in F \Leftrightarrow \delta^*(p, w) \in F,$$

for all $w \in \Sigma^*$ and $|w| \leq k$; written as $p \sim_k q$.

If they are equivalent for all k, then $p \sim_k q$. The $p \sim q$ and $p \sim_k q$ are equivalent relations.
Minimization Example

Finite automata to be minimized

- q_6 has no role, hence it can be removed.
- q_1, q_5 are indistinguishable states because their behavior is identical for any string supplied at these states. These are called equivalent states, and can be merged. In merging two equivalent states, one state is eliminated, and the state which remains will have in addition, all incoming transitions from the removed state.
- Similarly, the states q_0, q_4 are also indistinguishable states, hence they can also be merged. q_3 is dead state.
Formalism for minimization

- Identify and remove of unreachable states
- Identify and merge of indistinguishable states
- Identify and merge of dead states.

First step: Find all reachable states R, the non-reachable states are $Q - R$.

$$R = \{q_0\}$$

while $\exists p, p \in R \land \exists a, a \in \Sigma$, and $\delta(p, a) \notin R$

do

$$R = R \cup \delta(p, a)$$

endwhile

- A sequence is accepted if $\delta^*(q, w) \in F$

- **Indistinguishability** is an equivalence relation. Let $p, q, r \in Q$. Let $p \equiv q$, if they are indistinguishable.

 $p \equiv p$; reflexive

 $p \equiv q \iff q \equiv p$; symmetry

 $p \equiv q, q \equiv r \Rightarrow p \equiv r$; transitivity, \therefore, indistinguishability is an equivalence relation.
Let $x, y \in \Sigma^*$, then x and y are said to be *equivalent with respect* to L (i.e. $x \approx_L y$), if for some $z \in \Sigma^*$, $xy \in L$ iff $yz \in L$.

\approx_L relation is *reflexive, symmetric, and transitive*, \therefore, it is *equivalence* relation, which divides the language set L into equivalence classes.

For a DFA M; $x, y \in \Sigma^*$ are equivalent with respect to M, if x, y both derive M from a state q_0 to same state q', $\delta^*(q_0, x) = q'$ and $\delta^*(q_0, y) = q'$, $\therefore, x \approx_M y$.
There is no unreachable state

(2) Indistinguishable states

q_1, q_2 are indistinguishable, and q_0, q_3 are distinguishable

(3) Reduced automata: The set of distinguishable states are:

$[s_0] = \{q_0\}, [s_1] = \{q_1, q_2\}, [s_2] = \{q_3\}$.

Start and final states are $[s_0], [s_2]$.
minimization Algorithm (Table Filling Algorithm)

Let $\delta(p, a) = p'$ and $\delta(q, a) = q'$, for $a \in \Sigma$. If p', q' are distinguishable then so are p, q

Proof: if p', q' are distinguishable by wa then p, q are distinguishable by string w.

1. **Remove inaccessible/unreachable states:**

 Remove $Q - Q_R$, where Q_R is set of accessible states.

2. **Marking distinguishable states:**

 Mark p, q as distinguishable, where $p \in F, q \notin F$

 For all marked pairs p, q and $a \in \Sigma$

 if $\delta(p, a), \delta(q, a)$ is already marked distinguishable then mark p, q as distinguishable.

3. **Construct reduced automata:**

 i) Let the set of indistinguishable(equivalent) states be sets $[p_i], [q_j], \ldots$ such that $\forall i, j \ [p_i] \cap [q_j] = \phi$ and $[p_i] \cup [q_j] \cup \cdots = Q_R$

 For each $\delta(p_i, a) = q_j$, add an edge from $[p_i]$ to $[q_j]$

4. **Mark the start and final states:**

 if $q_0 \in [p_i]$ then mark $[p_i]$ as start state,

 if $q_f \in F$, then mark $[q_f]$ as final state.
Let $M = (Q, \Sigma, \delta, s, F)$. Remove first all the non-reachable states.

step 1. For $p \in F$ and $q \in Q - F$, put “x” in table at (p, q). This shows that p, q are distinguishable.

step 2. If $\exists w$, and $\delta^*(p, w) \in F \land \delta^*(q, w) \notin F$
mark (p, q) as distinguishable.

step 3. Recursion rule:
if $\delta^*(p, w) = r, \delta^*(q, w) = s$, and (r, s) were earlier proved distinguishable, then (p, q) are also distinguishable.
Consider that we have to minimize the FA shown above. The state q_3 is unreachable, so it can be dropped.

Next, we mark the distinguishable states at begin as final and non-final states. and make their entries in table as $(q_2, q_0), (q_2, q_1), (q_4, q_2), (q_5, q_2), (q_6, q_2), (q_7, q_2)$ and indicate these by mark “X”
Next we consider the case $\delta(q_0,1) = q_5, \delta(q_1,1) = q_2$. Since (q_5, q_2) are already marked distinguishable, therefore, (q_0, q_1) are also distinguishable.

Like this we have filled the table shown above. Unmarked are indistinguishable states.
Only states pairs which are not marked distinguishable are \(\{q_0, q_4\} \) and \(\{q_1, q_7\} \) The automata shown in figure above is reduced automata.