
4CS4-6: Theory of Computation (Recursive and Recursively Enumerable Langs.)

Lecture 23: April, 20, 2020

Prof. K.R. Chowdhary : Professor of CS

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal
publications. They may be distributed outside this class only with the permission of the
Instructor.

23.1 Introduction

A language acceptable by Turing machine is called Recursively Enumerable (RE), which
means that the set of strings in the language accepted by the Turing Machine can be enu-
merated. Recursively enumerable language is a type of formal language which is also called
partially decidable or Turing-recognizable. It is known as type-0 language in the Chomsky
hierarchy of formal languages. The RE languages are always countably infinite. The class
of RE languages has a broad coverage of languages, and they include some languages, which
cannot be defined by a mechanical algorithm. TMs will fail to halt on some input not in
these languages. If w is a string in RE language then the TM will eventually halt on w.

There exists three equivalent major definitions for the concept of a RE language.

Definition 23.1 RE Language. A RE formal language is a recursively enumerable subset
in the set of all possible words over the alphabet of the language.

Definition 23.2 RE Language. A RE language is a formal language for which there
exists a Turing machine (or other computable function) which will enumerate all valid strings
of the language.

Note that, if the language is infinite, the enumerating algorithm provided can be chosen so
that it avoids repetitions, since we can test whether the n-th string produced is “already”
produced for some number less than n. If it is already produced, use the output for input
n + 1 instead (recursively), but again, test whether it is “new”.

Definition 23.3 RE Language. A RE language is a formal language for which there
exists a Turing machine (or other computable function) that will halt and accept when pre-
sented with any string in the language as input. But may either halt and reject or loop
forever when presented with a string not in the language.

Contrast this to recursive languages, which require that the Turing machine halts in all
cases.

All regular, context-free, context-sensitive and recursive languages are recursively enumer-
able. The RE languages together with their complement co-RE, form the basis for the
arithmetical hierarchy.

23-1

23-2 Lecture 23: April, 20, 2020

However, if M is still running on some input, we can never tell whether M will ultimately
accept if it is allowed to run long enough or M will run forever. Therefore, it is appropriate
to separate the subclass of RE languages accepted by at least one TM that halts on all
inputs. However, halting may or may not be preceded by acceptance.

23.2 Recursive and Recursively Enumerable sets

We wish to study recursively invariant properties of sets of integers, in particular those
properties which have to do with solvability and unsolvability. Most basic is the property of
possessing a recursive function.

Definition 23.4 Recursive. A set is recursive if it possesses a recursive characteristic
function. That is to say, set A is recursive if and only if there exists a recursive function f
such that for all x, x ∈ A ⇒ f(x) = 1, and k /∈ x ⇒ f(x) = 0. �

Intuitively, a set A is recursive if there exists an effective procedure for deciding, given any
x, whether or not x ∈ A.

Following are the recursive sets:

i. The set {0, 2, 4, ...} of even numbers;

ii. N and φ;

iii. Any finite set;

iv. Any set with finite complement.

The sets (iii) and (iv) are recursive, since explicit listing of the appropriate finite set can be
used to give instructions for the characteristic function.

There are N recursive sets. By cardinality, nonrecursive sets must exist (since there are total
2N0 subsets of N in all), and 2N is larger than N.

Definition 23.5 Recursively Enumerable. A set A is recursively enumerable if either
A = φ or there exits a recursive function f such that A = is range of f . �

Theorem 23.6 If A is recursive, then A is recursively enumerable

Proof: Case I. A is φ. Then, A is recursively enumerable by definition.

Case II. A is finite and A 6= φ. Let A = {n0, n1, ..., nk}.

Now, define f by,

f(x) =

{

nx, for x ≤ k,
nk, otherwise

Case III. A is infinite. Let g be its characteristic function. Define f by

F (0) = µy.

Lecture 23: April, 20, 2020 23-3

23.3 Recursive and Recursively Enumerable Languages

Definition 23.7 Recursive. They allow a function to call itself. Or, a recursive language
is a recursive subset in the set of all possible words over alphabet Σ of that language. �

A language is Recursive (R) if some Turing machine M recognizes it and halts on every
input string, w ∈ Σ∗. Note that Recognizable is equal to Decidable. Or A language is
recursive if there is a membership algorithm for it.

Let L be a recursive language and M the Turing Machine that accepts (i.e. recognizes) it.
For string w, if w ∈ L, then M halts in final state. If w /∈ L, then M halts in non-final
state, (halts always!)

Non-recursive should not be taken as simpler version of computation, i.e., e.g., obtaining
factorial value without recursion method. We have the relation:

Regular languages ⊆ CF languages ⊆ CS languages

⊆ R languages ⊆ RE languages. (23.1)

Definition 23.8 Recursively Enumerable. A language is Recursively Enumerable (RE) if
some Turing machine accepts it. �

A Turing Machine M with alphabet Σ, accepts language L if,

L = {w | w ∈ Σ∗ and M halts with input w}. (23.2)

Let L be a RE language and M the Turing Machine that accepts it. Therefore, for w ∈ L,
the TM M halts in final state, and for w /∈ L, M halts in non-final state or loops for ever.

Relation between Recursive and RE Languages Every Recursive (R) language is
Recursively Enumerable (RE). Therefore, if M is Turing Machine recognizing language L,
which is R, then M can be easily modified so its accepts language that is RE. The languages
which are non-RE cannot be recognized by TM. These are diagonal (Ld) languages of the
diagonal of x, y, where xi is language string wi, and yi is TM Mi.

Recursive
Languages

Recursieve enumerable

Non-RE languages

Diagonal languages

Languages

Figure 23.1: Relation between R and RE.

23-4 Lecture 23: April, 20, 2020

Theorem 23.9 If a language L is recursive then there exists an enumeration procedure for
it.

Proof: If Σ = {a, b}, then M ′ can enumerate strings: a, b, aa, ab, ba, bb, aaa,

M ′ M
All strings on
alphabet Σ

Figure 23.2: Enumeration of language.

The Enumeration procedure is as follows. Let M ′ generates string w (see Fig. 23.2).
Next, the TM M checks, if w ∈ L is “yes,” then it outputs w else ignore w. Let L =
{a, ab, bb, aaa, . . .}. The M ′ output is {a, b, aa, ab, ba, bb, aaa, }, L(M) = {a, ab, bb, aaa, . . .},
and enumerated output is a, ab, bb, aaa, . . .

The terms Turing Recognizable and RE are used interchangingly, as they ultimately mean
the same. A language L is Turing recognizable if it is the language of some TM M (i.e.,
L = L(M)). A language is RE if there exists a TM M that can enumerate string in L, on
its tape or say output tape, such that x ∈ L is generated to appear in a finite amount of
time.

23.4 Class of Languages

Following are the classes of languages:

• If a language is Recursive, then it is decidable, and the corresponding their Turing
Machine always halts.

• Recursive Enumerable means semi-decidable, but not recursive, which implies that
their Turing Machines always halt if they accept, otherwise halts in non-accepting
state or loops.

• Non-recursively enumerable (non-RE) means there are no Turing Machine for them
to recognize. See Fig. 23.1 for relations between languages.

The Recursive languages are closed under complementation, the following theorem proves
this.

Theorem 23.10 If L is recursive then L is also recursive.

Proof: Following are the steps:

1. The accepting states of M are made non-accepting states of M ′ with no transitions,
i.e., here M ′ will halt without accepting.

2. If s is new accepting state in M ′, then there is no transition from this state.

Lecture 23: April, 20, 2020 23-5

3. If L is recursive, then L = L(M) for some TM M that always halts. Transform M
into M ′ so that M ′ accepts when M does not and vice-versa. So M ′ always halts and
accepts L. Hence L is recursive.

The Fig. 23.3 explains the process.

M ′

w M

accept

reject

Accept

Reject

Figure 23.3: Co-Recursive is Recursive.

Theorem 23.11 If L and L are RE, then L is Recursive.

Proof: Let L = L(M1) and L = L(M2). Construct a TM M that simulates M1 and M2

in parallel, using two tapes and two heads. If input to M is in L, then M1 accepts it and
halts, hence M accepts it and halts. Otherwise, if input to M is not in L, hence it is in L,
therefore, M2 accepts and halts, hence M halts without accepting. Hence, M halts on every
input and L(M) = L. So L is recursive (see Fig. 23.4).

Accept
Accept

Accept
Reject

w

M1

M2

M

Figure 23.4: L and L are RE, then L is Recursive.

Closure Properties of Recursive Languages Set Recursive languages are closed under
following set operations,

• Union,

• Concatenation,

• Intersection,

• Kleene star,

• Complement, and

• Set difference (L1 − L2).

23-6 Lecture 23: April, 20, 2020

Theorem 23.12 A language L is recursively enumerable iff there exists an enumeration
procedure for it.

Proof: If there is an enumeration procedure, then we can enumerate all the strings, and
compare each with given string w each time till it is generated. If the language is RE,
then we can follow an enumeration procedure to systematically generate all the strings (see
Fig. 23.5).

w

Enumerator

for L
Compare

Accept

Machine that accepts L

Figure 23.5: Enumeration machine for language L.

The algorithm for enumeration of RE language is as follows:

while (1) {

generate();

compare();

if same exit();

}

Intersection of RE and R Languages Given a Recursive and a RE languages: Their
Union is RE, Intersection is RE, Concatenation is RE, and Kleenes closure is RE. If L1 is
Recursive and L2 is RE, then L2 − L1 is RE and L1 − L2 is not RE.

Theorem 23.13 The intersection R and RE languages is RE.

Proof:

The proof is as follows.

1. Let L1 and L2 be languages recognized by Turing machines M1 and M2, respectively.

2. Let a new TM M∩ is for the intersection L1 ∩ L2. M∩ simply executes M1 and M2

one after the other on the same input w: It first simulates M1 on w. If M1 halts
by accepting it, M∩ clears the tape, copies the input word w on the tape and starts
simulating M2. If M2 also accepts w then M∩ accepts.

Lecture 23: April, 20, 2020 23-7

3. Clearly, M∩ recognizes L1 ∩ L2, and if M1 and M2 halt on all inputs then also M∩

halts on all inputs.

Theorem 23.14 The union of two Recursive languages is recursive.

Proof:

Yes

x M1

No
Yes

No

Yes

Yes

No
M2

M

Figure 23.6: Union operation of Recursive Languages.

The TM corresponding to this must halt always. Let L1 and L2 be sets accepted by M1

and M2, respectively. Then L1 ∪ L2 is accepted by TM M , where x = w1 ∪w2, for w1 ∈ L1

and w2 ∈ L2 (see Fig. 23.6).

Theorem 23.15 The union of two RE languages is RE.

Proof: Let L1 and L2 be sets accepted by M1 and M2, respectively. Then L1 ∪ L2 is
accepted by TM M , where x = w1 ∪ w2, for w1 ∈ L1 and w2 ∈ L2.

x M1

M2

Yes

Yes

M

Figure 23.7: Union of two RE languages.

To determine if M1 or M2 accepts x we run both M1 and M2 simultaneously, using a two-
tape TM M . The M simulates M1 on the first tape and M2 on the second tape. If either
one enters the final state, the input is accepted (see Fig. 23.7).

