
4CS4-6: Theory of Computation (NP, NP-complete, NP-Hard)

Lecture 26: April, 23, 2020

Prof. K.R. Chowdhary : Professor of CS

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal
publications. They may be distributed outside this class only with the permission of the
Instructor.

26.1 The Class NP

Definition 26.1 NP. A language is in NP iff it is decided by some Nondeterministic
Turing Machine (NDTM) in Polynomial time. An NDTM guesses the alternatives.

Polynomial solution for these problems are not known to exist. In an NDTM the solution
is selected nondeterministically rather than systematically examining all the possibilities.
Therefore P ⊆ NP, because a P problem is also an NP (see Fig. 26.1). Hence, NP is class
of membership problems for languages in,

NP =
⋃

P (n)

NTIME(P (n)). (26.1)

Following the examples of NP problems:

1. SATISFIABILITY Problem. Input is Boolean expression u in CNF (Conjunctive
Normal Form), and output is Yes, if there is an assignment that satisfies u else No.
The Complexity in P is unknown, while in NP is Yes. This problem is also called
SAT problem.

Definition 26.2 NP -Complete. A decision problem B is NP -complete if:

(a) B is in NP , and

(b) every problem A in NP is reducible to B in polynomial time.

The problem B can be shown to be in NP by demonstrating that a candidate solution
to B can be verified in polynomial time.

A consequence of this definition is that if we had a polynomial time algorithm on a
Universal TM (UTM), for B, we could solve all problems in NP in polynomial time.

The Satisfiability problem is NP -complete. A Boolean expression φ = {x̄∨y)∧ (x∨ z̄)
is satisfiable for x = 0, y = don’t care, z = 1, as it evaluates φ to 1 (TRUE).

SAT is languages of all satisfiable formulas,

26-1

26-2 Lecture 26: April, 23, 2020

SAT = {〈φ〉 | φ is satisfiable Boolean formula}. (26.2)

Cook-Levin theorem links the complexity of SAT problem to complexities of all prob-
lems in NP . Using this, any NP problem can be converted into SAT in polynomial
time.

2. Hamiltonian Path Problem. The input is directed graph G = (V,E), and output is
Yes if there is a single cycle that visits all nodes, and No other wise. The complexity
P is unknown, and NP is Yes. A Hamiltonian path problem is in NP, but its solution
can be verified in P.

3. Subset Sum Problem. The Input is set S, number k, and output is YES if there is set
P ⊆ S, whose total is k, else No. The Complexity class P is unknown, while NP is
YES.

The table 26.1 shows the various complexity classes for Time.

Table 26.1: Complexity classes for Time

Class Machine Time constraint

DTIME(f(n)) DTM f(n)
P DTM poly(n)
NTIME(f(n)) NDTM f(n)
NP NDTM poly(n)
EXPTIME DTM 2poly(n)

26.2 Space Complexity

Definition 26.3 S(n). A function S(n) is called space constructible if there exists an S(n)
space-binded Deterministic Turing Machine that, for each input |w| = n requires exactly
S(n) space. Therefore, S(n) is space complexity of a deterministic Turing Machine.

Definition 26.4 DSPACE(S(n)). It is class of languages that have space complexity of
O(S(n)), on deterministic TM.

DSPACE(S(n)) = {L | L is decidable by O(S(n)) space on DTM}.

Definition 26.5 PSPACE : The class of membership problems for the languages decidable
in polynomial space on deterministic Turing Machine are:

PSPACE =
⋃

k

DSPACE(nk) (26.3)

Definition 26.6 NSPACE(S(n)):

NSPACE(S(n)) = {L | L is decidable by O(S(n)) space on NDTM}

Lecture 26: April, 23, 2020 26-3

The table 26.2 shows the details of various space complexities.

Table 26.2: Space Complexities

Class Machine Space constraint

DSPACE(f(n)) DTM f(n)
L DTM O(log n)
PSPACE DTM poly(n)
EXPSPACE DTM 2poly(n)

NSPACE(f(n)) NDTM f(n)
NL NDTM poly(n)

NEXPSPACE NDTM 2poly(n)

Theorem 26.7 Savitch’s Theorem: If a Nondeterministic TM uses f(n) space, it can be
converted into a Deterministic TM that uses f2(n) space.

As per Savitch’s theorem: PSPACE = NSPACE, EXPSPACE = NEXPSPACE.

For nondeterinistic TM, if f(n) is maximum number of tape-cells scan in any branch of
computation, then its complexity is f(n).

The SAT problem, which is NP − Complete in time, is linear space, because the space is
reusable.

PSPACE = NSPACE,

P ⊆ PSPACE.

NP ⊆ NSPACE,

Therefore, NP ⊆ PSPACE.

From above,
P ⊆ NP ⊆ PSPACE = NPSPACE ⊆ EXPTIME.

P NP PSPACE
EXPTIME

NPSPACE

Figure 26.1: Complexity classes’ relations

26.3 NP-Complete and NP-Hard Problems

Definition 26.8 NP-Complete: A language B is NP-complete if it satisfies two-conditions:
(1) B ∈ NP , (2) Every A ∈ NP is polynomial time reducible to B, i.e.,

26-4 Lecture 26: April, 23, 2020

B ∈ NP ∧ ∀A : A ∈ NP ∧ A ≤P B ⇒ B ∈ NP -Complete.

Definition 26.9 NP-Hard. A language Q is NP-hard if every L ∈ NP is polynomially
reducible to Q, i.e.,

∀L : L ∈ NP ∧ L ≤P Q ⇒ Q ∈ NP -hard

.

The NP-hard problem that is also NP is called NP -complete. The figure 26.2 shows the
relations between P , NP , NP -complete, and NP -hard problems for P 6= NP .

P

NP

NP -

NP -Hard

Complete

Figure 26.2: P, NP, NP-complete, and NP-hard set of problems

Definition 26.10 Co-NP: Co-NP is complement of NP , therefore, Co-NP is set of all
the complements of all the NP problems.

Theorem 26.11 NP-Complete Theorem: If B is NP-Complete and B ∈ P , then P = NP .

Proof: If B is NP-Complete then every problem in NP is polynomially reducible to B.
Since B ∈ P , therefore, every NP problem is polynomially reducible to B, which is P .
Hence, every NP is P , i.e. P = NP .

Once we get NP-Complete, other NP problems can be reduced to it. However, establishing
first NP-Complete problem is difficult.

Theorem 26.12 If B ∈ NP-Complete and B ≤P C for C ∈ NP , then C ∈ NP-Complete.

Proof: We must show that every A ∈ NP is polynomially reducible to C. Because B is
NP-Complete, therefore, every A ∈ NP is polynomially reducible to B. (as per property of
NP-Complete). And B in turn is polynomially reducible to C (given).

Because the property of polynomial is closed under the composition, we conclude that every
A ∈ NP is polynomially reducible to C. Therefore C is NP-Complete.

Theorem 26.13 Cook-Levin Theorem: SAT is NP -Complete.

Lecture 26: April, 23, 2020 26-5

Proof Idea: It is easy to show that SAT is NP , the hard part is to show that any language
in NP is polynomially reducible to SAT .

Therefore, we construct a polynomial time reduction for every A ∈ NP to SAT . Reduction
for a language A takes input w and produces Boolean formula φ that simulates the NP

machine for A on input w.

If machine accepts, φ has a satisfying assignment, that corresponds to accepting computa-
tion, otherwise NO.

Therefore, w ∈ A iff φ is satisfiable.

The examples of NP -Complete problems are: 3-SAT , Hamiltonian path problem, subset
construction problem.

Following are also the NP -complete problems.

Boolean satisfiability problem (SAT)

Hamiltonian path problem

Travelling salesman problem (decision version)

Subset sum problem

Vertex cover problem

Graph coloring problem

