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5.1 Introduction

For a language L, if a NFA recognizes it then there also exists an equivalent DFA that
recognizes it. In fact, in this DFA only certain sequences of transitions are to be selected
for the given input to reach to final state, and other sequence of states though exists, are
not accounted for final walk-through. Therefore, the class of languages accepted by a DFA
is subset of the class of languages accepted by an NFA. It will be shown that these classes
are in fact equal. An NFA though makes available a much more generality than DFA, but
is in no way more powerful than the corresponding DFA. An NFA can always be converted
into an equivalent DFA.

5.2 Equivalence of NFA and DFA

Any two finite automaton M1 and M2 are equivalent if the languages accepted by them are
equivalent, i.e., L(M1) = L(M2). The following theorem shows that for every NFA, there
exists an equivalent DFA.

Theorem 5.1 For every NFA there exists an equivalent DFA.

Proof. Let MN = (Q,Σ, δ, s, F ) be an NFA, and we intend to show that there exists a DFA
MD = (Q′,Σ, δ′, s′, F ′) equivalent to MN . To prove this we need to represent tuples of MD

in terms of the tuples of MN .

We know that after each symbol is read, an NFA occupies a set of states out of 2Q. If each
set is considered as a single state for an equivalent DFA, the maximum number of states
in MD will be Q′ = 2Q. Accordingly, we denote an element of Q′ by {. . . , qi, . . . }, where
qi ∈ Q.

The definition of transition function δ′ in MD is bit complex. A move in an equivalent MD

on reading an input symbol a ∈ Σ simulates a transition in MN associated with possibly
number of null (ε) transitions in Mu. For any state qi ∈ Q, we define C(qi) as ε-closure of
qi as a set of all the states of MN that are reachable from state qi with ε input. Hence,

C(qi) = {qj ∈ Q | δ(qi, ε) = qj}. (5.1)
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In other words, C(qi) is ε-closure of the set {qi} under the relation,

{(qj , qk) | there is a transition of the form δ(qj , ε) = qk;

qj ∈ C(qi), and qk /∈ C(qi)}.

The set C(qi) is computed using algorithm 5.1.

Algorithm 1 ε-Closure.

1: for i:= 1 to n do
2: C(qi) := {qi}
3: end for
4: while there is transition δ(qj , ε) = qk; qj ∈ C(qi) and qk /∈ C(qi) do
5: C(qi) := C(qi) ∪ {qk}
6: end while

This algorithm adds an edge to C(qi) in every pass through the while loop. The transition
graph thus formed for the DFA MD can have at most 2|Q|× |Σ| number of edges, hence the
loop should eventually terminate.

Based on above, different tuples of the equivalent deterministic finite automata MD can
now be defined as,

Q′ = 2Q

s′ = C(s), (ε-closure of s)

F ′ = {D}.

In the above, every element D of F ′ is defined as, if qf ∈ F , then D = {. . . , qf , . . . } ∈ F ′.
In addition, for each a ∈ Σ and for each D ∈ F ′ the δ′ can be generalized as follows:

δ′(D, a) =
⋃

{{qj} | δ(qj , a) = qk; qj ∈ D and qk ∈ Q} (5.2)

where {qj} = C(qj), is set of all the states reachable from qj through ε - transitions. Hence,
the δ′(D, a) is a state of MD corresponding to the set of all the states of MN to which MN

can move by reading an input a followed by possibly any number of ε-transitions. The set
of these Ds form the final states in equivalent DFA.

Since all the tuples for a DFA have been defined in terms of the tuples of NFA, it can be
concluded that there exists an equivalent DFA consisting these tuples, for every NFA. �

5.3 Examples

Following example demonstrates the conversion of NFA for a given DFA.

Example 5.2 Given the NFA in figure 5.1 find an equivalent DFA.
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q0 q1 q2
a|b a|b
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Figure 5.1: NFA.

Let the transition function for NFA be δ, for equivalent DFA as δ′, and start state of
equivalent DFA as {q0}.

δ′({q0}, a) = {q0, q1}

δ′({q0}, b) = {q1}.

Note that, in above we have used {q0}, {q2}, as sets. This is because in δ′ there are state
sets only, and each sets as subset of Q.

δ′({q0, q1}, a) = δ(q0, a) ∪ δ(q1, a)

= {q0, q1} ∪ {q2}

= {q0, q1, q2}.

δ′({q0, q1}, b) = δ(q0, b) ∪ δ(q1, b)

= {q1} ∪ {q2}

= {q1, q2}.

Proceeding in the similar way we compute the other states, and finally obtain the equivalent
DFA shown in figure 5.2.

δ′({q1}, a) = {q2}

δ′({q1}, b) = {q2}.

δ′({q0, q1, q2}, a) = δ(q0, a) ∪ δ(q1, a) ∪ δ(q2, a)

= {q0, q1} ∪ {q2} ∪ φ

= {q0, q1, q2}.

δ′({q0, q1, q2}, b) = δ(q0, b) ∪ δ(q1, b) ∪ δ(q2, b)

= {q1} ∪ {q2} ∪ {q2}

= {q1, q2}.
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δ′({q1, q2}, a) = δ(q1, a) ∪ δ(q2, a)

= {q2} ∪ φ

= {q2}.

δ′({q1, q2}, b) = δ(q1, b) ∪ δ(q2, b)

= {q2} ∪ φ

= {q2}.

δ′({q2}, a) = δ(q2, a) = φ

δ′({q2}, b) = δ(q2, b) = {q2}.

{q0}

{q0, q1}
{q1}

a b

{q0, q1, q2} {q1, q2}

a
b

{q2}

φ

b a|b

a|b

a

b

a

Figure 5.2: Equivalent DFA for the NFA in fig. 5.1.

We note that number of states in the equivalent DFA are 7. The maximum states in this
case can be 2{q0,q1,q2} = 8.

A state set label in the equivalence DFA is final state if one of the state qi in this set is final
state of corresponding NFA. For example, if qj ∈ F in NFA, then {. . . , qj , . . . } ∈ F ′ is in
DFA. The empty states can be dropped as they do not have any practical significance.


