
Computer Organization
(Input-output)

KR Chowdhary
Professor & Head

Email: kr.chowdhary@gmail.com

webpage: krchowdhary.com

Department of Computer Science and Engineering
MBM Engineering College, Jodhpur

November 14, 2013

KR Chowdhary Input-output 1/ 42



Introduction to IO

◮ IO of computer makes it
possible to have interaction
with the outside world. IO are
the devices outside the CPU
and memory, to which
CPU/memory communicate to
get the
information/data/programs
into computer as well as send
these outside.

◮ IO devices are: Keyboard,
mouse, monitor(computer
display), hard-disk, CD ROM,
pendrive, printer, network
card, etc.

◮ Due to the large variation in
speed, IO devices cannot be
connected to the bus directly.

Typical speeds are: keyboard:
5-10 char per sec., printer
100s - 1000s char per sec.,
hard disk: millions of char
(bytes per sec.), etc. If CPU is
designed to interact with
devices directly through the
bus, its complexity increases
excessively.

◮ Different IO devices store the
data in different formats.
Consequently, they are
connected to the bus via IO
controllers (called IO
modules).

◮ One side of these controllers is
connected to to the bus and
other to device.

KR Chowdhary Input-output 2/ 42



Synchronous and Asynchronous I/O

◮ Asynchronous(non-blocking)
I/O: is a form of I/O
processing that permits other
processing to continue before
the transmission has finished.

◮ I/O operations on a computer
can be extremely slow
compared to the processing of
data. An I/O device can
incorporate mechanical devices
that must physically move,
such as a hard drive seeking a
track to read or write; this is
often far slower than the
switching of electric current.
For example, during a disk
operation that takes ten

milliseconds to read/write, a
processor that is clocked at 1
GHz could have performed ten
million instruction-processing
cycles. (These approach are
either polled or interrupt
driven)

◮ A simpler approach to I/O
would be to start the IO and
then wait for it to complete,
called (synchronous or
blocking I/O), would block
the execution of instructions
while the communication
(data transfer) is in progress,
leaving system resources idle
(For example inDMA)

KR Chowdhary Input-output 3/ 42



Asynchronous data transfer

If registers in the interface share common clock with CPU register, then
traffic between the two is synchronous.

◮ Asynchronous data transfer takes
place between two independent
units.

◮ One way of achieving this is by
means of strobe pulse to indicate
the intention of data transfer.

◮ In below, CPU is data source
and initiator of strobe.

Source

unit

Destination

unit

data bus

strobe

data valid
data

strobe

Figure 1: Timing diagram(TD)
for memory write (source
initiated strobe)

Source

unit

Destination

unit

data bus

strobe

data valid
data

strobe

Figure 2: TD for memory read
(destination initiated strobe)

◮ In above CPU (data destination)
initiates strobe, & memory
releases data.

◮ In both cases, source unit has no
way to know that destination has
received the data, and
destination has no way to know
that source has sent the data.

KR Chowdhary Input-output 4/ 42



Asynchronous data transfer:Hand shake

The data transfer between an interface and I/O device is commonly
controlled by a set of handshaking lines.

Source

unit
Destination

unit

data bus

data accepted

data validData bus

data valid

Data accepted

Data valid

Sporce Destination

place data on bus
enable data valid

accept data from bus
enable data accepted

disable data accepted
ready to accept datadisable data valid

inivalidate data
on bus (initial)

Sequence of events

1.
2.

3. 4.

Figure 3: Source initiated transfer

Source

unit
Destination

unit

data bus

ready for data

data valid

Ready for data

data valid

Data bus

Data valid

Sporce Destination

Sequence of events

ready to accept data
enable ready for data

accept data from bus
disable ready for data

place data on bus
enable data valid

disable data valid
invalidate data on bus

(inital state)

1.2.

3.
4.

Figure 4: Destination initiated transfer

KR Chowdhary Input-output 5/ 42



Hand shaking

◮ Hand shaking scheme provides
a high degree of flexibility and
reliability (the successful data
transfer relies on the active
participation of both parties)

◮ If one unit is faulty, data
transfer cannot be initiated
and completed. Such error can
be detected by time out
mechanism.

KR Chowdhary Input-output 6/ 42



I/O Controllers

◮ Devices are connected to the bus through I/O controller (I/O
Module).

System Bus

CPU memory I/O

Controller

To peripheral devices
(tape, Hard disk, CD)

Figure 5: Connection of I/O devices and I/O controller

KR Chowdhary Input-output 7/ 42



I/O controllers functional units

D
ev

ice
In

terface
D

ev
ice

In
terface

L
o

g
ic

L
o

g
ic

D
ata

reg
ister

S
tatu

s/ctrl
reg

ister

I/O
Logic

data bus

address bus

control bus

To system bus
To device

data

status

control

data

status

control

b
b
b

Figure 6: I/O device Interface

◮ Functions performed I/O controller are:
1. Control and timing of data read/write
2. Communication with processor and devices
3. Data buffering (to handle speed mismatch)
4. Error detection

KR Chowdhary Input-output 8/ 42



Typical I/O Interface unit

To deviceTo CPU

Port A
Register

Port B
Register

Control
Register

Status
Register

Bidirectional

data bus
Bus

buffers

T
u

n
in

g
an

d
C

o
n

tro
l

CS

RS1
RS0

RD

WR

In
te

rn
al

b
u

s

Chip select

Register-

select

I/O read

I/O write

Figure 7: IO device Interface

CS RS1 RS0 Register selected
0 x x None: data bus in high impedance
1 0 0 Port A register
1 0 1 Port B register
1 1 0 Control register
1 1 1 Status register

KR Chowdhary Input-output 9/ 42



Detailed functions of I/O controller

◮ Control and timing of data
R/W: Coordinate the flow of
traffic between internal
resources and external devices.

1. The processor interrogates
the I/O controller to check
the status of the attached
device.

2. The I/O controller returns
the device status.

3. If device is ready to
transmit, processor requests
transfer of data by means
of a command to I/O
controller.

4. I/O controller obtains a unit
of data (e.g., 8 or 16 bits)
from the external device.

5. The data are transferred
from I/O controller to the
processor.

◮ Processor communication
involves:

1. Command decoding: I/O
controller (for disk) accepts
commands from processor:
READ SECTOR, WRITE
SECTOR, SEEK track
number, etc.

2. Data are exchanged
between processor and I/O
controller

3. Status reporting: BUSY
and READY.

4. Address recognition: I/O
controller must recognize
address of each peripheral.

KR Chowdhary Input-output 10/ 42



Detailed Functions of I/O controller...

◮ Data buffering: (handles speed
mismatch) Buffering makes
possible the communication at
the speed of CPU/ memory/
device.

◮ I/O controller responsible for
error detection and reporting
to processor: paper jam, bad
disk track, changes to the bit

pattern (parity check)

◮ IO Channel/Processor: An
I/O controller taking most of
the detailed processing
burden, presenting a high-level
interface to the processor, and
used on mainframes.

◮ I/O Operations: Control, test,
read, write.

KR Chowdhary Input-output 11/ 42



Device interface

Control logic

To IO controller

Control Data

Buffer

Transducer

Data to and

Device

signal
Status
signal

from environment

Figure 8: I/O device with Interfaces

◮ The control provide communication between controller and device

◮ Environment is magnetic surface in the case of hard disk, optical
surface in case of CD-ROM.

KR Chowdhary Input-output 12/ 42



Types of I/O (or Modes of Transfer)

◮ Polled I/O (or programmed I/O)

The cpu polls the device continuously after some interval, whether
the device wants to transfer the data. If yes, the cpu transfer a byte
to or receives a byte from it.

Read the byte

are
there more
bytes to be

read?

yes

next step of
program

Read status bit

device
ready?

no

yes

short wait

yes

Figure 9: Read operation from device in polled I/O.

KR Chowdhary Input-output 13/ 42



Polled I/O write operation

read status bit

device
ready ?

No
yes

write the byte

more
bytes to
write?

no

next stepyes

wait

Figure 10: Write operation from device in polled I/O.

◮ CPU reads the status bit, if it is set(indicating that device is ready),
the byte is written by cpu to I/O, else it waits for some time and
again tries.

◮ Is it efficient method?

KR Chowdhary Input-output 14/ 42



Polled I/O: Memory-mapped v/s Isolated I/O

Figure 11: Memory-mapped and Isolated I/O.

KR Chowdhary Input-output 15/ 42



Polled I/O: for 8085

◮ Repeatedly tests the status of I/O device, hence it wastes the cpu
time. However, its architecture is simple to implement.

Example: busy waiting then input

wait: IN 1 ; read io device status

CPI ready ; if ready, set Z=1, else set z=0

JNZ wait ; io device waiting

IN 2 ; read data into accumulator

;Transfer a block in 8085

LXI H, 10

MVI B, 100

loop: IN 7 ; read from port 7

MOV M, A

INX H

DCR B

JNZ loop

KR Chowdhary Input-output 16/ 42



Memory Mapped v/s Isolated I/O

◮ I/O devices are connected
through I/O module or I/O
controller to bus.

◮ Each I/O port of the module
has an address. If that is
address of device, it is Isolated
I/O. Alternatively, address
space of I/O can be treated as
memory locations. Thus,
address space of memory gets
reduced by the magnitude I/O
address. This is Memory
mapped I/O.

◮ In isolated I/O only IN addr
/OUT addr instructions exist.

For 8-bit I/O address total 256
I/O addresses exists in 8085.

◮ In memory mapped IO all the
memory reference instruction
can be executed for IO ports:
STA addr, LDA addr, MOV A,

M; MOV B, M; MOV M, C;

ADD M; ADI M; ORA M; ORI

M; SUB M; SBI M (8085
processor). Hence, memory
mapped IO is more flexible to
use compared to Isolated IO.
Now, at least in theory, entire
memory can space can be
used as IO address space.

KR Chowdhary Input-output 17/ 42



Interrupts driven I/O

Interrupt driven I/O
◮ The program controlled I/O

degrades the system
performance as the cpu gets
tied down to the I/O.

◮ The interrupt mechanism
greatly improves the
performance of the CPU.

◮ In interrupt driven IO, timing
of I/O is controlled by the
device, and the cpu remains
occupied in its own job for
rest of the time.

◮ IO device interrupts the CPU
when IO is required. On this
CPU saves its status including
the PC, and control is
transferred to an ISR

(interrupt service routine),
which performs I/O. On return
from ISR, CPU resumes at its
previous operation.

◮ CPU gets an interrupt when,
for example,

- a character is entered on
keyboard,

- monitor is ready for next
refresh

- a block transfer complete from
memory to I/O or I/O to
memory

- HW interrupts are due to
division by zero, or an attempt
to execute a privileged
instruction by user program.

KR Chowdhary Input-output 18/ 42



Classes of Interrupts

Classes of Interrupts:
1. Program: Generated by some

conditions which occurs as a
result of instruction execution:

◮ arithmetic over flow
◮ divide by zero
◮ attempt to execute illegal
machine instruction

◮ reference to outside user’s
allowed memory space

2. Timer Interrupt: generated by
timer of processor; allows to
perform certain functions at
regular intervals

3. IO: Interrupt generated by IO
controller to: signal normal

completion/start of an IO, or
to send variety of error
conditions

4. HW failure: Power failure,
memory parity error.

Advantages of Interrupts

◮ Improves processing efficiency
due to slow IO and fast CPU

◮ User program does not need
any special code for interrupt

◮ Processor and OS are
responsible to suspend the
program, and cause it to
return back

KR Chowdhary Input-output 19/ 42



Interrupt Processing

User Program

write

write

IO Program

IO Command

End

End

1

2

3

4

5

I/O = 4 + 5 (A)

◮ User program waits till the
interrupt is processed and
control returns back to it.

◮ 4 = save context, 5 Interrupt
handler + context restore.

◮ (A): Control returns back
immediately to user program

User Program

write

IO Program

IO Command

End

1

2

3

4

I/O = 4 + 5

Interrupts handler

End

Interrupt
5

(B)

◮ (B): user program is called on
the completion of processing
of interrupt handler.

◮ What is difference between
two?

KR Chowdhary Input-output 20/ 42



Handling Multiple Interrupts

◮ Program may be receiving data from communication line, and send
them to printer. So communication line will cause interrupt, as well
as the printer.

◮ Two approaches to handle multiple interrupts: 1) Disable interrupts,
2) Priority interrupts

user program

Intr 1

Intr2

Int serv. routine1

Intr. service routine 2

Serquential Interrupts

Intr1
Intr2

user program

Nested Interrupts

I1: Printer int, I2: communication

serv. Int, I3: Disk intr

I1

I2

I3

KR Chowdhary Input-output 21/ 42



Working of Interrupt

◮ Interrupt request pending, if any, is tested by cpu after execution of
every instruction. If pending, it is serviced and cpu resumes normal
execution, else cpu continue with the next instruction.

fetch instruction

execute instruction

is
interrupt pending?

yes

save pc, service interrupt
retrieve pc

no

Figure 12: Interrupt servicing

KR Chowdhary Input-output 22/ 42



Working of interrupt...

◮ Steps:

1. CPU identifies the source of interrupt (may require polling of I/O
device)

2. CPU obtains address of ISR. (may be supplied by device along with
Interrupt request)

3. PC, CPU status saved
4. PC loaded with ISR address

◮ Usually, the ISR has DI instruction at its beginning and EI (Enable
intr.) at its end, followed by return

ISR: DI

high priority ISR

EI

RET

◮ Interrupt selection/Device Identification:

1. Multiple interrupt lines (limits interrupts)

2. Software polling (test I/O, read adr register): time consuming

3. Vectored Interrupt (daisy chaining/HW polling:)

KR Chowdhary Input-output 23/ 42



Working of interrupt

1. Multi-line interrupt:
-Called multi-level interrupt. No
need of HW or SW to scan ports.
- Unless some other technique is
used, CPU may have to execute
the program that fetches the ISR
address. Can be eliminated by
vectoring technique. (fixed priority)

IO port 0 IO port 1 IO port k

CPU

Interrupt
register

Intr req lines

To IO devices

b b b

Figure 13: Multi-line interrupts

2. Single-line interrupt system:
All the interrupts are ORed
together. An interrupt from any
device will set the interrupt flag in
CPU. On knowing that, CPU
determines source of interrupt.
(programmable priority?)

bb

To IO devices

Io port 0 IO port 1 IO port k

Interrupt request

CPU

Interrupt

FF

b b b

Figure 14: Single-line interrupt

KR Chowdhary Input-output 24/ 42



SW poll and interrupt vectoring

◮ Software poll: On detecting interrupt, the processor branches to a
service routine, which polls IO modules to determine who has
interrupted, and then serves ISR of that.

- Disadv: time wasted in polling.
◮ Daisy Chaining:

1. Hardware polled. All IO modules share a common interrupt line and
Int. ack.like is daisy chained through these modules.

2. Requesting module places a word on the data bus (address of IO
module - called vector)

3. Vector is used a pointer to ISR (called vectored interrupt)

Bus
terminator

Bus

terminator

BPRN BPRN BPRNBPRO BPRO BPRO
(highest priority) (lowest priority)

Master 1 Master 2
Master 3

Distributed Arbitration
BPRN: Bus priority out

BPRN: Bus priority in
Intrrupt line

Interrupt
ack. line

Figure 15: Vectored interrupt

KR Chowdhary Input-output 25/ 42



Vectored Interrupt

◮ The device sets INT=1 when
it wants to cause the interrupt

◮ Interrupt vector: An 8-bit
signal for device to identify
itself, which is used as an
entry into a interrupt vector
table to get the starting
address of the ISR (Interrupt
service routine).

device A

device K

bb
b

Interrupt

controller
CPU

INT

INT
vector

b

Figure 16: Vectored interrupt

◮ Most flexible and fastest
response to interrupt is there
when interrupt request causes
direct HW implemented
transition to current interrupt
handling program.

◮ This requires that interrupting
device supply to cpu the
staring address or transfer
vector of that program. The
technique is called vectoring.

KR Chowdhary Input-output 26/ 42



Vectored Interrupt contd.

◮ In the figure shown below, the interrupt vector is supplied by the
device itself via the data bus

◮ Each I/O port may request the services of many different programs.

◮ Address on data bus modifies PC. Takes control of data bus
temporarily. Alternatively send instruction call x

b b b

INT req 0

int ack0

int ack n-1

int req n-1

IO port 0 io port n-1

To IO devices

b b b

bb
data bus

To cpu

p
rio

rity
circu

it

(interrupt program address)

Int. req.

Intr. ack

Figure 17: Another implementation of vectored interrupt

KR Chowdhary Input-output 27/ 42



Vectored Interrupt with masking

◮ The k masked interrupt signals are fed into a priority encoder that
produces a ⌈log2 k⌉-bit address, which is then inserted into program
counter as a sub-field.

Intr
req.

lines

interrupt
mask
register

Interrupt pending

p
rio

rity
en

co
d

er

b

address to PC

Interrupt register

b

b

Figure 18: Intr. vectoring with masking of interrupts.

KR Chowdhary Input-output 28/ 42



Vectored Interrupt ...

◮ When int req. from port i is
received, priority encoder
generates 2-bit address, which
is inserted into PC. Rest of
the bits of PC are zeroed.

◮ Thus, 2 bit will generate
addresses: 0-3. This is
multiplied by 4 to get (0, 4, 8,
12) as the position of
interrupt vectors.

◮ Fig. 19 shows that first four
locations (words, each 32 bits)
are assigned to interrupt
vectors.

0
addr 16

4
addr 28

8 addr 40

12 addr 200

16

28

40

200

device A
ISR

device B
ISR

device C
ISR

device D

ISR

vector addr of device A ISR

vector addr of device B ISR

Figure 19: Interrupt vectors are stored
in memory

KR Chowdhary Input-output 29/ 42



IO controller

A

C lower

C upper

B

data
buffers

8-bit
internal bus

control
logic

8
8

8

8

4

4

8

c̄sreset

A0

A1
RD

WR

data

bus

To CPU

To IO device

D
ata

B
u

ffer
C

o
n

tro
l

R
eg

ister

Figure 20: IO controller (intel 8255)/
PPI-programmable peripheral
Interface.

◮ The Intel 8255 is called IO
controller/IO module. There
are three IO ports: A, B, C.

◮ The port C can be used as two
4-bit ports or one 8-bit ports.
A, B are always 8-bit ports.
All these ports can be
programmed as Input, output,
bidirectional in polled mode or
as interrupt mode.

◮ Programming is done by
writing a 8-bit control word at
port address 112. In polled
mode certain lines can be used
for handshaking.

KR Chowdhary Input-output 30/ 42



IO controller-8255

◮ Following tables show the direction of ports:

A0 A1 RD WR CS Direction
0 0 0 1 0 A→ databus

0 1 0 1 0 B → databus

1 0 0 1 0 C → databus

0 0 1 0 0 databus → A

0 1 1 0 0 databus → B

1 0 1 0 0 databus → C

1 1 1 0 0 databus → control

◮ Three are 3-modes of operation for PPI 8255:

mode 0: Basic input/output, mode 1: strobed I/O; mode 2:
bidirectional bus

◮ various bits of control word:

D7 = 1⇒ mode set flag, 1=active.

D6D5 = 00⇒mode 0,01⇒mode 1,1x ⇒mode 2

D4 = 1⇒ port A I/P, 0: O/P,

D3 for port C upper, D2 for mode 0 & 1, D1 for port B, D0 for port
C lower. Any bit can be set or reset.

KR Chowdhary Input-output 31/ 42



Interrupt Controller

b
b

b

C

A

B

8

8

In
tel

8
2

5
5

P
P

I
as

in
terru

p
t

co
n

tro
ller

data

data ready

data acknow-

data bus

A0
A1

Read
write

to IO
deviceto cpu

Intr request

ledgement

Figure 21: Programmable peripheral
Interface as Interrupt Controller.

◮ 8255 chip is used as interrupt
controller. The port C is used
as interrupt port for strobing.
Port A is used as data port for
data input or output.

◮ Interrupt signal is stored in
cpu register which is
periodically tested by the cpu.
Usually, the interrupts are
assigned priorities based on
the priorities of IO devices or
services they are performing.

KR Chowdhary Input-output 32/ 42



Introduction to DMA

DMA(Direct Memory Access)
◮ CPU relinquishes the bus, and

get itself isolated. The IO
takes place between memory
and IO device at clock speed.
When I/O is complete, DMA
controller removes the bus
request line, CPU takes over
the bus, and processing
resumes at the point is was
left.

◮ IO transfers are limited by the
speed by which the CPU can

test and service IO.

◮ The testing IO status and
executing IO commands can
be better used for processing
tasks.

◮ DMA request by IO device is
for demand of BUS and not
CPU (in interrupt it is
reverse).

◮ The DMA request can be
granted BUS at the end of any
CPU Cycles(fig.)

KR Chowdhary Input-output 33/ 42



Introduction to DMA

◮ DMA v/s Interrupts:
- DMA break points are after
each of following to opcode
fetch, decode opcode, fetch
operand (if any), execute
instruction. However, the
interrupt break point is after
instruction is executed, and
not in between.

◮ Why there is difference in
break points of these?

Instruction cycle

DMA breakpoints
Fetch

instruction

CPU
cycle

Interrupt breakpoint

Figure 22: DMA and Instruction
breakpoints during an instruction
cycle.

KR Chowdhary Input-output 34/ 42



Functional blocks of DMA

main memory

Control
unit

AR ACC

IR ctrl
unit

DMA req

DMA ack

To IO device

system bus

DMA controller

DC IO AR IO DR

address

data

control

CPU

Figure 23: DMA controller block diagram.

◮ Functional blocks: DC (data count) keeps initial count of no. of
words /bytes to be transferred, IOAR: is memory address from that
location onward data is to be transferred to/from memory, IODR: IO
data reg., for holding word/byte while it is being transferred to
IO/RAM.

KR Chowdhary Input-output 35/ 42



Working of DMA

◮ DMA is used for bulk data transfer between memory and IO.

◮ The cpu relinquishes the control of the bus, and surrenders it to
DMA for doing this data transfer

◮ The transfer is initiated by CPU, and DMA controller interrupts the
cpu to indicate that DMA is over

◮ DMA steps:

1. CPU executes two IO instructions which loads IOAR and DC. (IOAR
is base addr of main memory, DC = words count to be transferred)

2. DMA controller gives bus request when ready to transfer to data.
On this DMA acknowledges (grants the bus to DMA controller) (bus
priority control is used when request are too many)

3. DMA controller transfers the data.
4. If IO device is not ready but DC > 0, the DMA controller deactivates

the DMA request. On this CPU acknowledges bus grant low, and
resumes normal operation.

KR Chowdhary Input-output 36/ 42



Classification of DMAs

◮ DMA types:

1. Block transfer DMA
2. Cycle stealing DMA (bus cycles are stolen by DMA, during the time

cpu is inactive, to carry out DMA)

◮ DMA block Transfer:

- Data of arbitrary length are transferred in a single continuous burst.

- DMA controller is bus master

- It is used when secondary memory devices are mag. disk, and cannot
be stopped or slowed down without loss of data.

- Supports maximum transfer rate

- CPU has to remain inactive for long period

◮ Cycle stealing DMA:

- allows DMA controller to use system bus to transfer one or several
words/bytes, and returns control back to CPU

- long strings are split

- reduces the DMA speed but also the interference of DMA to CPU

KR Chowdhary Input-output 37/ 42



Exercises

1. Indicate whether the following constitutes a control, status, or data
transfer commands:
1.1 Skip next instruction if flag is set
1.2 seek a given record from a magnetic disk
1.3 check if IO device is ready
1.4 Move printer paper to beginning of next page
1.5 Read interface status register

2. Why does the DMA has priority over CPU when both request a
memory transfer?

3. How many 8-bit characters can be transmitted per second over a
9600 baud serial communication link using asynchronous mode of
transmission with one start bit, eight data bits, two stop bits, and
one parity bit?
(a) 600 (b) 800 (c) 876 (d) 1200

4. A DMA module is transferring characters to memory using cycle
stealing, from the device transmitting at 14400 bps. The processor
is fetching instructions at the rate of 1 million instructions per
seconds (1 MIPS). By how much will the processor be slowed down
due to due to the DMA activity?

KR Chowdhary Input-output 38/ 42



Exercises

5. Consider the system in which bus cycles takes 500 nsec. Transfer of
bus control in either direction from processor to I/O device or
vice-versa, takes 250 nsec. One of the I/O devices has a data
transfer rate of 75 KB/s and employs DMA. Data are transferred
one byte at a time.

5.1 Suppose we employ DMA in a burst mode. That is, the DMA
interface gains bus mastership prior to the start of a block transfer
and maintains control of the bus until the whole block is transferred.
How long would the device tie up the bus when transferred a block
of 256 bytes?

5.2 Repeat the above for cycle stealing mode.

6. An asynchronous link between two computers uses the start-stop
scheme, with one start bit and one stop bit, and transmission rate of
38.8 kilobits per sec. What is the effective transmission rate as seen
by the two computers?

KR Chowdhary Input-output 39/ 42



Exercises

7. A DMA controller serves four receive only telecommunications links
(one DMA per channel) having speed of 64 kbps each.

7.1 Would you operate the controller in burst-mode or cycle stealing
mode?

7.2 What priority scheme would you employ for service of the DMA
channel?

8. A processor and I/O device D are connected to main memory M via
a shared bus having width of one word. CPU can execute 106

instructions per sec. An average instruction requires five machine
cycles, three of which use the memory bus. A memory read or write
operation uses one machine cycle. Suppose that processor is
continuously executing background program that requires 95% of its
instruction execution rate but not any I/O instructions. Assume that
one processor cycle equals one bus cycle. Now suppose that the I/O
device is to be used to transfer very large blocks data between M

and D.

8.1 If programmed I/O is used and each one-word I/O transfer requires
the processor to execute two instructions, estimate the maximum
I/O data-transfer rate, in words per sec., possible through D.

8.2 Estimate the same rate if DMA is used.

KR Chowdhary Input-output 40/ 42



Exercises

9. A typical CPU allows mots interrupts to be enabled and disabled
under software control. In contrast, so cpu provides facilitates to
disable DMA request signals. Explain why it is so?

KR Chowdhary Input-output 41/ 42



Bibliography

John P. Hayes, ”Computer Architecture and Organization”, 2nd
Edition, McGraw-Hill, 1988.

William Stalling, ”Computer Organization and Architecture”, 8th
Edition, Pearson, 2010.

M. Morris Mano, “Computer System Architecture-3rd Edition”,
Pearson, 2006 (chapter 11).

http://krchowdhary.com/co/co.html

KR Chowdhary Input-output 42/ 42


