
, 8

COMPILER CONSTRUCTION (Lexical Analyser Generator : Lex) Fall 2019

Lecture 7, 8: July 29 & 31, 2019

Instructor: K.R. Chowdhary : Professor of CS

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal

publications. They may be distributed outside this class only with the permission of the

Instructor.

7.1 Lexical Analyser Generator

FLEX (Fast LEXical analyser generator) is a tool for generating scanners. It was written
by Mike Lesk and Eric Schmidt in 1975, for Unix and Unix like operating system. It is now
open source and available on Linux and its variants. In stead of writing a scanner from
scratch, you only need to identify the vocabulary of a certain language (e.g. words like,
Simple, hard, etc.), write specifications of patterns using regular expressions (e.g. DIGIT as
[0-9]). Having this specifications FLEX will construct a scanner for you. FLEX is generally
used in the manner described below:

1. First, FLEX reads a specification of a scanner either from an input file *.lex, or from
standard input, and it generates as output a C source file lex.yy.c.

2. Then, lex.yy.c is compiled and linked with the “-lfl” library to produce an executable
a.out.

3. Finally, the program a.out is run that analyses its input stream and transforms it into a
sequence of tokens.

Note that program Lex is not only for C compiler, but in general for all the languages. The
program *.lex is in the form of: pairs of regular expressions, and C code. The file lex.yy.c

defines a routine yylex() that uses the specification to recognize tokens; and a.out is actually
the scanner! (see Fig. 7.1).

A Lex program has the following form:

declarations

%%

translation rules

%%

auxiliary functions

The declaration section comprise declarations of variables, manifest constants (identifiers to
stand for constant, e.g., name of a token), and the regular definitions.

7-1

7-2 Lecture 7, 8: July 29 & 31, 2019

The translations rules have the form:

Pattern {Action},

Each pattern is regular expression that makes use of regular definitions of the declaration
section. The actions are fragments of code, usually written in C. The third section of
Lex holds additional functions used in the actions. These functions can also be compiled
separately and may be loaded along with the lexical analyser.

The following is more specific details of Lex program format:

Input file Format:

definitions

%%

rules

%%

user code

Definitions section:

"name definition"

Rules section:

"pattern-action"

User code section:

"yylex() routine"

The lexical analyser created by Lex is called by the parser as a routine. Once called, it
starts reading inputs, character by character, until it finds the longest prefix of the input
that matches one of the patterns Pi, and then executes the corresponding actions Ai. These
patterns are usually lexemes, which returns a single value, i.e., the token name to the parser.
The lexical analyser may use a shared integer variable yy1val to pass additional information
about the lexeme, if needed. If what is found by lexical analyser is whitespaces, nothing is
returned to parser.

Flex

C Compiler

a.out

Specification of

- stdin
- *.lex

lex.yy.c

lex.yy.c

a.out

Input stream sequence of tokens

a scanner

(Source Program)

Figure 7.1: Lexical Analyser generator

Consider that “test.lex” is a Lex program for generating a lexical analyser. We compile it
using lexical analyser generator (Flex) to generate the lexical analyser lex.yy.c in C language,
which is compiled by GCC to get a.out executable. Following are some command sequences
related to lexical analyser generation process (see Fig. 7.1).

$ gedit test.lex

Lecture 7, 8: July 29 & 31, 2019 7-3

$ flex test.lex # outputs lex.yy.c

$ ls -l

lex.yy.c

....

$ gcc lex.yy.c -lfl ; compile lex.yy.c and link to flex library

$./a.out

Input few lines here, terminate with ^d

Example 7.1 A simple Lexical analyzer to implement the wc command.

$ cat test.lex

/* just like Unix wc (word count command)*/

%{

int chars = 0;

int words = 0;

int lines = 0;

%}

%%

/* regular definitions */

[a-zA-Z]+ {words++; chars += strlen(yytext);}

\n {chars++; lines++;}

. {chars++;}

%%

/* auxiliary functions */

int main()

{

yylex();

printf("%d %d %d\n", lines, words, chars);

return 0;

}

$./a.out < text.lex

21 33 266

�

7.2 Design consideration for Lex

In the declarations section there are pair of special brackets, %{ and %}. Any thing in
these brackets is copied directly to the file lex.yy.c, and not treated as regular definition.
It is common to place there the definitions of the manifest constants, using C #define
statements to associate unique integer codes with each of the manifest constants. In this
example, we have listed in a comment the names of the manifest constants, LT,GT , etc.,
but we have not shown them defined to be particular integers. Note that declaration section
appears between %{...%}.

7-4 Lecture 7, 8: July 29 & 31, 2019

The regular definitions in the declarations are used for defining other definitions or used
in the patterns of the translation rules surrounded by curley braces. For example delim is
short hand for character class comprising of blank, tab, or new line. Then ws is defined a
sone or more delimiters, i.e., delim+.

Note that, id and number do not stand for themselves, but for grouping of numbers, but
+, ∗, or? stand for themselves.

In the auxiliary functions section there are two functions, installID() and installNum().
Every thing in the auxiliary section is copied directly into the file lex.yy.c, but may be used
in the actions.

There are other things to be noted in this code. The ws is an identifier declared in the first
section, has no action. The reason is that if we come across a white-space, we do not return
any thing to the parser, but look for next lexeme. In the case of two letters if , with no
letter or digit followed to it, the lexical analyzer returns token IF . To make sure it is if

only, the scanner goes beyond letter if , and then returns back to start of lexeme next to if .
Similar is case with then, else.

The next pattern for token is id. Note that keywords that are like id also match this. This is
resolved as follows: Lex chooses which ever pattern is listed first, in situations where longest
matching prefix matches two or more patterns. When id is matched, following action is
taken:

1. Function installID() is called to place the lexeme found, into the symbol table.

2. The above function returns a pointer to the symbol table, which is placed in the
global variable yylval, which can also be used by the parser or later stages. The
installID() has two variables, that are set automatically by the lexical analyzer, that
Lex egenrates:

(a) yytext is a pointer to the beginning of the lexeme,

(b) yyleng is length of lexeme found.

3. The token name ID is returned to the parser.

Similar is the case with the installNum().

To resolve the conflict, the Lex uses to decide on the proper lexeme to select, when several
prefixes of the input match one or more patterns:

1. Always prefer longer prefix to a shorter prefix,

2. If a longest possible prefix matches to two or more patterns, prefer the pattern listed
first in the Lex program.

The first rule says to continue reading letter and digits to find the longest prefix of these
characters to group as identifier. It also tells us to treat ”>=” as single lexeme and not two.
The second rule makes keywords reserved if they are listed before id in the program.

The Lex automatically reads one character ahead of the last character that forms the selected
lexeme. Then retracts itself so that lexeme only is consumed. Some time, we want the
pattern when it is followed by a specific character, e.g., semicolon in C.

Lecture 7, 8: July 29 & 31, 2019 7-5

Example 7.2 Lex Program to recognize the tokens in C language.

%{

/* definitions of constants

LT, EQ, LE, GT, GE, NE

IF, THEN, ELSE, ID, NUMBER, RELOP */

%}

/* regular definitions */

delim [\t\n]

ws {delim}+

letter [A-Za-z]

digit [0-9]

id {letter}({letter}|{digit})*

number {digit}+(\.{digit}+)?(E[+-]?{digit}+)?

%%

{ws} {/* no action and no return */}

if {return(IF);}

then {return(THEN);}

else {return(ELSE);}

{id} {yylval = (int) installID(); return(ID);}

{number} {yylval = (int) installNum(); retun (NUMBER);}

"<" {yylval = LT; return(RELOP);}

...

%%

int installID() {/* function to install lexeme, whose

first character is pointed to by yytext,

and whose length is yyleng. */

}

int installNum() {/* similar to installID, but puts numerical

constants into a separate table*/

}

�

References

[1] Compilers: Principles, Techniques, and Tools (2nd Edition) by Alfred V. Aho , Monica
S. Lam, et al., Sep 10, 2006

[2] Compiler design in C (Prentice-Hall software series) by Allen I Holub, Jan 1, 1990

[3] Engineering a Compiler, by Keith D. Cooper and Linda Torczon, Morgan Kaufmann
Publishers, 2004.

