
COMPILER CONSTRUCTION (FA and Design of Lexical Analyser) Fall 2019

Lecture 9: Aug. 01, 2019

Instructor: K.R. Chowdhary : Professor of CS

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal

publications. They may be distributed outside this class only with the permission of the

Instructor.

9.1 Finite Automata

A finite automata is like the graph we have used for recognition of tokens. However, there
are small differences. The finite automata are recognizers, as they simply say ”yes” or ”no”
about each possible string. A finite automata can be any of two types: 1. deterministic
finite automata (DFA) or 2. nondeterministic finite automata (NFA). The DFA has for each
state and each symbol combination, only one transition and its corresponding edge in the
graph. However, in the NFA, there is no restriction about labels on their edges. A symbol
can be a label of several edges emerging out of the same state, and, the ε, the empty symbol,
can also be a possible symbol. Both the the DFA and NFA are capable of recognizing the
same languages. The languages recognized by the automata are called regular languages.

A finite automata is represented by M = (Q,Σ, δ, s, F), where Q is set of states, Σ is set
of alphabets, δ is transition function, s is start state, F ⊆ Q is set of final states, and δ is
defined as,

δ : Q× Σ → Q.

We represent the DFA NFA both by transition graph.

Example 9.1 A DFA for regular expression (a|b)∗bbb.

q0 q1 q2 q3
c b b

a

b

Figure 9.1: A DFA for regular expression: (a|b)∗cbb

The DFA is shown in Fig. 9.1. This is an abstract example, which describes all the strings
ending with bbb, preceding with any number of a and b symbols in any order. The first circle
q0 with arrow entering is always taken as the start, and the state represented by double circle
is called final state. The machine is represented by M = ({q0, q1, q2, q3}, {a, b, c}, δ, s, q3). �

9-1

9-2 Lecture 9: Aug. 01, 2019

Algorithm 1 Simulating a DFA: Input: A string terminated by eof. A DFAD (as transition
table) with start state s0 and accepting states F . The transition function is new state =
move(current-state, symbol), Output = ”yes” if D accepts else ”no”
1: s = s0
2: c = nextChar()
3: while (c <> eof) do
4: s = move(s, c)
5: c = nextChar()
6: end while
7: if (s ∈ F) then
8: return ”yes”
9: else

10: return ”no”
11: end if

9.2 From Regular Expressiosn to Automata

A regular expression is a notation for describing lexical analysers and other pattern-processing
software. However, implementation of that software requires the simulation of a DFA or an
NFA. Since an NFA has choice of making a move with ε-input, or making more that one
move with same input symbol, its simulation is less forward than a DFA. Thus, there is a
need of converting an NFA into a DFA that accepts the same language.

While converting a NFA to DFA, we group the states that are different in NFA but are
the destination due to same transition symbol from the previous state. Also, we merge the
states that are due to null (ε) transitions, through the algorithm is called subset construction
algorithm.

More more details about conversion from NFA to DFA, refer to theory of computation
lectures.

Simulation of an NFA The text editing programs make use of concept of construct-
ing an NFA from a regular expression and then simulate the NFA using on-the-fly subset
construction (see Algorithm 2). Note that, uppercase S symbol is used for state set. This
because every transition in NFA is to a set of states. Even the start state may be a set,
e.g., if there is a ε-transition from s0 to s1 the ε-closure of s0 is {s0, s1} = S0. Similarly, we
consider the ε-closure for every state, which is merging of states to which there is transition
due to ε, along with the previous state.

9.3 Design of a Lexical-analyser

In the following we will discuss about how a lexical analyser generator like Lex can be
constructed. For this we need to discuss about the structure of a lexical analyser that could
be generated using Lex tool. Such lexical analyser is originally in the form of a lex program,
i.e., it consists of patterns and the actions. This program simulates a automaton – usually a
deterministic automaton. The Fig. 9.2 demonstrates this process, i.e., generation of lexical
analyser, and then using it as recognizer of tokens.

Lecture 9: Aug. 01, 2019 9-3

Algorithm 2 Simulating an NFA: Input: A string x terminated by eof. A NFAN with start
state s0 and accepting states F . The transition function is new state = move(state, symbol),
Output = ”yes” if N accepts else ”no”

1: S = ε-(s0)
2: c = nextChar()
3: while (c! = eof) do
4: S = ε-closure(move(S, c))
5: c = nextChar()
6: end while
7: if (S ∩ F ! = φ) then
8: return ”yes”
9: else

10: return ”no”
11: end if

Lexeme

Input buffer

Automaton

Simulator

Transition
Table

Actions

Lex
Compiler

Lex
Program

lexeme
begin forward

pointer
pointer

Figure 9.2: Creation of Lexical analyser

The figure comprises of components that are created from the Lex program by Lex itself.
These are as follows:

1. A transition table for the finite automata,

2. The functions that are passed by the Lex to the output,

3. Actions from input program, which are fragments of code to be invoked by the FA
simulator, when required.

The construction of FA we have presented in the form of algorithm 2.

In fact, given the regular expression, an NFA is constructed, which is converted into a DFA,
and then DFA is minimized for number of states, so that over all code is efficient. However,
all these we will not be repeating here, as their theoretical part is usually studied by the
students. The curious students may study these in some Theory of Computation text.

Example 9.2 Construction of NFA for given patterns.

9-4 Lecture 9: Aug. 01, 2019

......

0

ε

ε

ε

N(p1)

N(p2)

N(pn)

Figure 9.3: A NFA constructed from a Lex Program

We have the below given patterns and that aligns with the action

a {action A1 for patternp1}

abb {action A2 for patternp2}

a∗b+ {action A3 for patternp3}

The actions for these patterns are construction of NFA, and that are combined to forms
a single NFA. This NFA is converted into a DFA using standard algorithm making use of
subset construction approach.

References

[1] Compilers: Principles, Techniques, and Tools (2nd Edition) by Alfred V. Aho , Monica
S. Lam, et al., Sep 10, 2006

[2] Compiler design in C (Prentice-Hall software series) by Allen I Holub, Jan 1, 1990

[3] Engineering a Compiler, by Keith D. Cooper and Linda Torczon, Morgan Kaufmann
Publishers, 2004.

