
Introduction to Python Language

Prof. (Dr.) K.R. Chowdhary
Email: kr.chowdhary@jietjodhpur.ac.in

Campus Director,
JIET College of Engineering, Jodhpur

Tuesday 6th June, 2017

kr chowdhary Python Intro 1/ 18



History

A popular programming language, Python was created by
Guido van Rossam in 1989 and released as open source in
1991.

With applications of data mining and data analysis, Python is
a premier language of data analysis and the choice of new
programmers.

The Python community is strong and active – Python now
attracts more than 2,500 attendees annually (2015), and has
over 40 conferences each year around the world.

Over the past two decades, Guido has worked for many
companies that allowed him to remain involved with Python,
including Centrum Wiskunde & Informatica, CNRI, Zope,
Google, and now Dropbox.

kr chowdhary Python Intro 2/ 18



Motivation

Python features a mixture of readability and practicality – nice
features for an introductory language. It is also an interpreted
language that encourages experimentation–a great learning
aid.

It has a number of immediately available data structures
(strings, lists, dictionaries a.k.a. associative arrays, and sets)
with associated functions and methods to easily manipulate
those structures.

It is object-oriented which helps in preparation for both
solving complex problems and other languages.

Python interacts well with other languages which allows one
to apply high-level constructs to them.

kr chowdhary Python Intro 3/ 18



Motivation ...

It is a free language that runs under most environments
including, but not limited to, Microsoft Windows, Mac OS-X,
and Linux.

It includes many modern programming language features
together with a seemingly limitless set of modules that extend
it. Those modules come from the large and supportive Python
community that has been rapidly growing.

In short, Python can be described as a “best-practices”
language, providing practical tools to do a job with a
minimum of effort.

kr chowdhary Python Intro 4/ 18



Motivation ...

Taken together these features allow a novice to focus more on
problem solving and less on language issues.

In addition, the built-in language features make data
manipulation particularly easy allowing students to more easily
work on real data.

As a result, not only do students solve more challenging
problems, but they also have a tool that can be used in
subsequent courses, research or even personal use.

In an experiment, students have been able to download real
data from the Web and analyse it. Examples include building
a simple classifier for medical data, online transaction data,
and simulating DNA transcription.

The idea is to grab some real data, parse it into useful form,
and analyze it–ideal problem solving skills for scientists.

kr chowdhary Python Intro 5/ 18



Evidence that supports the suitability of Python as a
teaching language.

While Java remains a popular choice because of its association
with commercial use, the difficulty in learning programming is
aggravated by its complex syntax and semantics.

As such, Java’s notational overhead has been criticized as
making it unsuitable for novice programmers.

Python has a simple and clean syntax and structure and other
characteristics that make it appealing for teachers and
learners, such as dynamic typing, powerful built-in functions
and structures, and a simple development environment.

kr chowdhary Python Intro 6/ 18



Evidence that supports the suitability of Python as a
teaching language.

Python was designed to have simple syntax and semantics
leading to the elimination of the vast majority of errors
commonly made by novice programmers, such as missing
semicolons, bracketing problems, and variable type declaration
errors.

Python is also increasingly being used in real-world
applications (for instance, in high-profile organizations like
Google and Nokia.

Finally, since Python also supports the object-oriented
paradigm, it can be used as a transition language for
second-term or second-year courses that are based on C++
and Java.

kr chowdhary Python Intro 7/ 18



Empirical studies document outcomes of revising
introductory programming courses, switching to Python

Grandell et al. [2006] found that Python facilitated teaching
and learning and increased student satisfaction.

Conclusions were based on analysis of grade distributions,
self-reports, identifying the use of constructs in students’
code, and surveys of student attitudes toward programming.

However, despite the multiple measures used, the authors did
not provide evidence of statistical or grounded analysis, which
may limit the strength of the conclusions.

Similarly, Kasurinen and Nikula [2007]: moving from C to
Python led to higher grades, improved student satisfaction,
and a decline in dropout and failure rates.

kr chowdhary Python Intro 8/ 18



Empirical studies document outcomes of revising
introductory programming courses, switching to Python

A discussion and evaluation of the “Python first” approach by
Radenski [2006]: led to the development of a full online study
pack implementing this approach.

Empirical studies by Patterson-McNeill [2006], Stamey and
Sheel [2010], Miller and Ranum [2005], Oldham [2005],
Goldwasser and Letscher [2008], and Shannon [2003]: detail
the choices involved in redesigning the curriculum and the
shift from one language to another in their colleges and argue
for dramatic improvements with the use of Python, but no
explicit evaluation results are reported in any of these studies.

kr chowdhary Python Intro 9/ 18



Empirical studies document outcomes of revising
introductory programming courses, switching to Python

The study involved the analysis of 30 programs written in
Java and 30 programs written in Python produced by high
school students in 2 different academic years.

The results revealed that the Python programs contained
fewer logic and syntax errors and more frequently fulfilled the
required functionality.

Interviews with eight of the students who had learned Python
after Java revealed positive perceptions of the language.

kr chowdhary Python Intro 10/ 18



Python vs Java

Java was used as the introductory programming language for
students in many institutions.

Java introduces basic aspects of programming. However, it
may be problematic, not least because Java is heavily coupled
with object-oriented concepts, which may interfere with the
basic aim of an objects-later strategy.

Java “forces” some of the more advanced concepts into the
foreground–concepts which teachers do not typically want to
introduce at an early stage [Kolling 1999].

As a consequence, a student’s focus may switch from learning
the basic programming concepts to learning the language’s
syntax.

kr chowdhary Python Intro 11/ 18



Python vs Java

Drawing on the evidence that Java may not be well suited for
education, especially when introducing programming to
novices [Siegfried et al. 2008], the use of an alternative
programming language with a lower syntactic burden was
considered.

Several educators have argued that scripting languages could
offer a more effective alternative. Python is one example,
offering a simple and expressive language with support for
procedural programming.

It can be argued that the lower overhead associated with
Python should provide a gentler introduction to the basic
concepts of programming.

By using Python, a greater emphasis on core principles was
expected with less of an unwanted focus on syntax.

kr chowdhary Python Intro 12/ 18



Python vs Java

As already noted, Python is also widely used in industry and is
therefore considered to be attractive to students.

In the following, a set of programs are written in Java and
Python to exemplify the syntactic and semantic differences
between the two languages.

The juxtaposition of these programs suggests that Python has
a simple and intuitive syntax. On the other hand, a basic
program in Java may expose students to notation and
concepts that cannot be understood until well into their study.

As such, Python is expected to provide a speedier, less
overwhelming, and possibly more effective startup platform for
novice learners.

kr chowdhary Python Intro 13/ 18



Concepts Taught: Variables, primitive data types, and data
structures (arrays and lists)

Java:

public class ExampleClass

{

public static void main(String[]args)

{

int x = 42;

System.out.println(x);

}

}

Python:

x = 42

print x

kr chowdhary Python Intro 14/ 18



Concepts Taught: Control structures: selection

Java:

int x = 42;

if (x%2==0)

{

System.out.println(x +

" is even");

}

else

{

System.out.println(x +

" is odd");

}

Python:

x = 42

if x%2==0:

print x, "is even"

else:

print x, "is odd"

kr chowdhary Python Intro 15/ 18



Concepts Taught: Control structures: iteration

Java:

for (int i = 0; i <42; i++)

{

System.out.println(i);

}

Python:

for i in range (0,42):

print i

kr chowdhary Python Intro 16/ 18



Sub-programs: procedures/ methods

Java:

public static boolean

evenOdd(int n)

{

if (n%2==0)

{

return true;

}

else

{

return false;

}

}

Python:

def evenOdd(n):

if n%2==0:

return True

else:

return False

kr chowdhary Python Intro 17/ 18



Importing libraries

Java:

import java.util.Random;

Random randy = new Random();

int r= randy.nextInt(10);

Python:

import random

r= random.randrange(10)

kr chowdhary Python Intro 18/ 18


