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Search Engine
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Taxonomy of IR Models

Three classic models in IR are:

Boolean: Document and query are sets of Index terms.

Vector Space: Query and documents are vectors in t-dimensional
space.

Probabilistic: representation are based on probability theory.
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Formal Charaterization of models

IR Model : [D,Q,F ,R(qi ,dj)]

D: logical view/representation of documents

Q: logical view/representation of query

F : framework for representation of queries, documents, and their
relationship

R(qi ,dj): a ranking function (a real number), qi ∈Q, dj ∈D
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Concepts

Document is transformed to index terms

Nouns are index terms (others less useful)

More frequent keywords as index terms

Index terms are assigned weights

ki (index term), dj is document, then wi ,j ≥ 0 is weight for pair
(ki ,dj).

Let K = {k1,k2, . . .kt} is set of index terms. Weight wi ,j ≥ 0
associated with each term ki and document dj . For ki /∈ dj , wi ,j = 0.

dj has associated index term Vector
−→
dj = (wi ,j , . . .wt,j)

Let gi(d̄j) = wi ,j , is a function that returns weight associated with
each term. For the sake of simplicity, we assume that term weights
in a sentence are independent. However, in a true sense they are
not, say in computer network, the term “computer attracts the
existence of ”network“, and vice-versa.
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Boolean Model

It is based on theory of
Boolean algebra, simple,
intuitive.

Consider that index terms are
present/absence. wi ,j ∈ {0,1}.

Query q’s terms are linked by
and, or, not. q is either CNF
or DNF.

q = ka∧ (kb ∨¬kc) can be
written in DNF as −→q dnf =
(1,0,0)∨ (1,1,0)∨ (1,1,1)].
Each component (e.g.,
(1,1,0)) is binary weighted

vector associated with tuple
(ka,kb,kc).

(1,0,0)

(1,1,0)

(1,1,1)

ka

kb

kc

drawback: retrieval strategy is
binary decision
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Boolean Model

For wi ,j ∈ {0,1}, −→q dnf as query vector, let −→q cc be any of disjunctive
components of −→q dnf .

Similarity of dj to q is:

sim(dj ,q) =

{

1 if ∃−→q cc |(
−→q cc ∈

−→q dnf )∧ (∀ki ,gi(
−→
d j) = gi(

−→q cc))
0 otherwise.

if sim(dj ,q) = 1 then dj is relevant to q, else not.

no notion of partial match

e.g.,
−→
d j = (0,1,0), so dj includes index term kb, but not relevant to

query q = ka∧ (kb ∨¬kc).

Index term weighting brings vector model.
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Vector Model

Considers the documents that
match partially

Non-binary weights to index
terms in queries and
documents

Documents’ Similarity is
ordered in descending order

wi ,j for (ki ,dj) is positive and
non-binary.

Let wi ,j is weight for pair
(ki ,q).

−→q = (w1,q, . . . ,wt,q),

and t is index term count.
Vector

−→
d j = (wi ,j , . . . ,wt,j).

Cosine of θ adopted as
sim(dj ,q)

Vector model evaluates degree
of similarity between
document dj and query q as a

correlation between
−→
d j and

−→q .

This correlation is θ , angle
between vectors.
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Vector Model

Vectors:
−→
d j ,

−→q .

q

dj

θ

sim(dj ,q) =

−→
d j ·

−→q

|
−→
d j |× |−→q |

=
∑

t
i=1wi ,j ×wi ,q

√

∑
t
i=1w

2
i ,j ×

√

∑
t
j=1w

2
i ,q

where, |
−→
d j | and |−→q | are the

norms of document and query
vectors. The |−→q | does not
effect ranking as it is same for
all docs.

The factor |
−→
d j | provides

normalization.

vector model ranks the docs in
order of their similarity to
query, i.e., as per sim(dj ,q).

A threshold is used to reject
those below that.
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clustering

Given collection set C of
objects, and description of set
A, classify x ∈ C to R(x ,A),
and ¬R(x ,A), here R is
relation. (This is clustering)
(vague !).

Example: C is all cars, and A

is Maruti-Alto.

Example: C is all cancer
patients, and A= {terminal,
advanced, metastatis,
diagnosed, healthy}. Then A

divides C into five clusters.

For C = all docs, and A =
features of some docs, what
x ∈ C is x ∈ Ai (for i = 1,n) is
clustering.

A is documents features.

Term weights? it is based on
two factors: 1) intra-clustering
similarity, is based on term
frequency (tf) of term ki , in dj
(how well the term describes
the doc.), 2) inter-cluster
similarity, inverse of the freq.
of ki among documents (idf).
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Vector model

Let Docs = N , the ki term
exists in ni numbers. freqi ,j is
freq (counts) of ki in the dj ,
the normalized freq of ki in dj ,

fi ,j = log
freqi ,j

maxl freql ,j
,
where, maximum is computed
over all terms in doc dj . If
ki /∈ dj , then fi ,j = 0.
Let idf is inverse document

frequency for ki ,

idfi = log
N

ni

Best known weighted scheme
is: tf × idf

Adv: of vector:

term weighting improves
retrieval performance

partial matching of q and dj ,
allows retrieval of those not
matching fully

disadv: index terms are
assumed mutually independent
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Probabilistic model

Given dj and q, model will
find probability that dj is
relevant to q.

Certainly, R ⊆ D is relevant to
q; the R is ideal answer set

Here, wi ,j ∈ {0,1}, q ⊆
⋃

{ki}

R ⊆ D is set of relevant docs
and R̄ is non-relevant.

Let P(R |
−→
d j) is prob. that dj

is relevant to q, and Let

P(R̄ |
−→
d j) is prob. that dj is

non-relevant to q

Similarity of dj to q,

sim(dj ,q) =
P(R |

−→
d j)

P(R̄ |
−→
d j

)

Using Bayes rule:

P(A|B) =
P(B|A)P(A)

P(B) ,

sim(dj ,q) =
P(

−→
dj |R)P(R)

P(
−→
d j |R̄)P(R̄)

where, P(
−→
dj |R is probability

randomly selecting doc. given
that it is relevant. P(R) is
prob. that selected doc is
relevant.

Since P(R) and P(R̄) are
same for all docs.

sim(dj ,q)∼
P(

−→
dj |R)

P(
−→
d j |R̄)
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Probabilistic model

Assuming independence of index terms:

sim(dj ,q)∼
(∏

gi (
−→
d j )=1

P(ki |R))× (∏
gi (

−→
d j )=0

P(k̄i |R))

(∏
gi (

−→
d j )=1

P(ki |R̄))× (∏
gi (

−→
d j )=0

P(k̄i |R̄))

where P(ki |R) is prob. that ki exists in a doc randomly selected

from R , and
−→
k i means does not exist.
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