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ABSTRACT. A number  of operat ions which ei ther  preserve sets accepted by one-way s t ack  
automata or preserve sets accepted by deterministic one-way stack automata are presented. 
For example, sequential transduction preserves the former; set complementation, the latter. 
Several solvability questions are also considered. 

Introduction 

In [5], the notion of a stack automaton, both deterministic and nondeterministic, 
is defined. This device embodies many features used in the recognition aspect of 
currently used compilers. It is less powerful than a Turing machine but more potent 
than a pushdown automaton. Specifically, a stack automaton allows reading, but 
not writing, in the interior of its stack. (This occurs, for example, in the reading of 
symbol tables.) I t  permits writing and erasing only on a last-in first-out, basis. The 
stack automaton also permits reading the input many times (technically, a two-way 
read which corresponds in one sense to a multipass compiler), In the present paper, 
we discuss the important case when the stack automaton reads the input tape from 
left to right only, as in a single-pass compiler. This device, a generalization of the 
pushdown automaton, is called a "one-way ~stack automaton." Of special interest 
are the sets of words recognized by one-way stack automata, hereafter called 
"languages." 

Our motivation in studying one-way stack automata is twofold. :First, it is a 
natural specialization of the stack automata. And second, more of ALGOL can be 
recognized by this type of device than by a pushdown automaton. Thus sets ac- 
cepted by one-way stack automata may be better approximations to currently 
used programming languages than sets recognized by pushdown automata, i.e., 
context-free languages. 

The paper is divided into five sections. In Section 1, one-way stack automata and 
languages are introduced. In Section 2, various operations which preserve the family 
9f languages are considered. For example, intersection with a regular set preserves 
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languages, as does transformation by a sequential transducer and word reversal. In  
Section 3, it is shown that  languages are not dosed under complementation. In  
Section 4, some closure properties of D-languages (languages accepted by deter~ 
ministie one-way stack automata) are presented. By a lengthy argument, it is es- 
tablished that  D-languages are closed under complementation. D-languages are also 
closed under transformation by an inverse gsm (generalized sequential machine). 
Deletion of a word on the left,, or on the right, also preserves D-languages. Decision 
problems are considered in Sectioit 5. In particular, it is recursively solvable to 
determine if a language is empty or if a D-language equals a particular regular set. 
I t  is reeursively unsolvable to determine if an arbitrary language is context-free or a 
D-language. 

Since a one-way stack automaton is a complicated device, it is to be expected tha t  
the arguments are often quite involved and messy. They frequently require con- 
struction of one-way stack automata with special properties. We have used our dis- 
cretion and, whenever feasible, have either omitted or outlined the justification tha t  
a particular one-way stack automaton recognizes exactly a certain prescribed set. 
The methods employed also indicate alternative (but not necessarily simpler) 
proofs of known results about context-free languages. 

1. Preliminaries 

in  this section, the basic objects with which we are concerned in this paper, namely, 
the one-way stack automata and the sets recognized or accepted by them, are 
defined. 

Roughly speaking, a one-way stack automaton consists of a "finite-state con- 
trol," an " input"  sequence or tape, and a "stack." The device advances the input 
tape at most one symbol per move. The stack is a "last-in first-out" store, i.e., it 
may be written or erased from the right end in the conventional way. In addition, 
the interior part of the stack may be read but not rewritten. 

A one-way stack automaton operates in the following manner. If  the device is in 
a state, reading both an input symbol and a stack symbol, then it simultaneously 

(i) goes to another state; 
(ii) moves at  most one symbol to the right of the input symbol just read; 

(iii) does exactly one of two alternatives: (a) it may move its stack pointer 
(_~ read-write head) one symbol to the left or to the right, or keep it stationary, or 
(b) if it is reading the rightmost symbol on the stack, then it may write a (possibly 
empty) finite sequence of symbols onto the stack, simultaneously erasing the symbol 
just read. 

The reader is referred to [5] for a further discussion of a stack automaton as well 
as the motivation for its definition. 

We now formalize the above intuitive description. 
Definition. A one-way stack automaton (abbreviated "one-way sa") is a 9-tuple 

A = (K,  ~, ¢, $, F, 8, q9, Z0, F)  satisfying the following conditions: 
(1) K is a finite nonempty set (of states). 
(2) :~ is a finite nonempty set (of inputs). 
(3) ¢ and $ are two elements not in 2~ (the left and right endmarkers for the 

input). 
(4) g is a finite nonempty set (of stack symbols). 
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(5)  Z0 is in r ( the  i n i t i a l  s tack  symbol ) .  
(6)  ~ is a funct ion f rom K X (E O {¢, $} ) × r into the set  ~ of finite subsets ~ 

of {0, 1} X K X { - 1 ,  0, 1} X P* hav ing  the following proper ty :  ( , )  If  
f 

(d, q ,  e, w) is in ~(q, a,  Z)  and w ~ Z, then e = 0. 
(7)  q0 is in K ( the  s tar t  s ta te ) .  
(8)  F ~ K ( t h e  set of  f i n a l  s ta tes) .  

T h e  fo rmal i sm 3 (d, q', e, Z)  is in 6(q, a, Z)  means  the following: Suppose the  one- 
way  sa A is in s ta te  q, reading a on the input  t ape  and Z on the  stack.  Then  A m a y  4 

I 
(i)  go to s t a te  q ; 

(ii) m o v e  r ight  on the  input  t ape  if d = 1 and  remain s ta t ionary  if d = 0; 
(iii) m o v e  left on the s tack  if e = - 1 ,  move  right if e ='  1, and s tay  s ta t ionary  

i r e  = 0. 
The  formal i sm (d, q', 0, w) is in ~(q, a, Z)  means  tha t  if A is in configuration 

( q , a , Z )  o f K  X ( X U  {¢,$}) X I ~ , t h e n A m a y  
(i) move  on the  input  as specified by  d; 

l 
(it) go to s ta te  q ; 

(iii) wri te  w in place of Z. 
( L a t e r  in this p a p e r  the "wr i t e "  c o m m a n d  is restr icted so t h a t  it is applicable only 
when A scans the  r igh tmost  s tack  symbol . )  

in t roduced so far  allows only a single move  of the device. The  
expanded to allow discussion of sequences of basic operat ions of 

The  symbo l i sm 
formal ism is now 
the device. 

D e f i n i t i o n .  An i n s t a n t a n e o u s  descr ip t ion  (abbrev ia ted  I D )  of a one-way sa is 
any  e lement  of K X (Z U {¢, $})* X (P U {q})*, where5 1 is a symbol  n o t i n  F. 

The  I D  (q ,  a~ • • .  ak , Z~ . . .  ZAZj+~ • • • Z z )  denotes  the fact  tha t  A is in s ta te  q, 
reading input  a~, with Z~ . • • Z~ on the s tack  and  A scanning Z j .  I is referred to 
as the " s t a c k  po in te r . "  

N o t a t i o n .  Given  a one-way sa A = (K,  Z, ¢, $, P, ~, q0, Z0,  Z0, F) ,  the relation 
~- be tween I D ' s  is defined as follows: Let  i, k, 1 3Z 1; a~, . . .  , ak in Z (.J {¢, $}; 

Z~, . . .  , Z z i n F ;  y i n F * ; a n d Z i n P .  
(1)  I f  (d ,  q', e, Z~) is in  ~(q,  a~,  Z j ) ,  where 1 < i < k and  1 ~_ j < l, and  (i)  

e > 0 i f j  = 1, and  (it) e < 0 i f j  = l ; t h e n  

( q , a ~ . . .  a k , Z 1 . . .  Zjl . . .  Zz) ~ (qr, a i+d . . ,  a~,Zl  "" Z~+~l " Zt). ~ 
(2) If (d, q~, O, w) is in ~(q, a i ,  Z)  for some 1 < i < k, then  

(q ,  ai . "  ak , y Z l )  ~ (q ' ,  ai+~ . . " a k ,  y w l ) .  

For  se t s  of words  X and Y, the  (complex) product of X and  Y, wr i t t en  X Y ,  is the  s e t  lxy I x 
in X,  y in Y}, where  xy  is t h e  c o n c a t e n a t i o n  of x and  y. Le t  X ° = { e}, where e is tim e m p t y  
word.  For  i >_ 0, l e t  X ~+1 = X i X  and  X* = U~=0 X i. T h u s  Z* is the free semigroup wi th  iden t i ty  
genera ted  by  Z. 

Because  of a difference in po in t  of view be tween  [5] and the  p r e sen t  paper ,  a one-way  sa  now 
means  a n o n d e t e r m i n i s t i c  device .  In  [5], a one-way  sa  is t aken  as a de te rmin i s t i c  device .  
3 To avo id  long s t r ings  of quant i f iers ,  unless  s t a t e d  o therwise  q and q' are in K ,  a is 
i a z  I.J {¢,$}, Z i s i n r ,  d i s in  {0,1} , and e is in [ -1 ,0 ,1} .  
4 A is nondeterministie and thus may have other choices. 
5 As in [5], for technical convenience many elements are called instantaneous descriptions even 
though they do not correspond to actual configurations of a one-way sa, e.g., any ID with two 
occurrences of ~. 

a,+~ • .. ak is to be interpreted as e. 
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The relation [- completely describes the atomic acts of a one-way sa. Condition 
(1) allows one-way motion on the input tape and two-way reading of the stack. 
Restrictions (i) and (ii) prevent A from going off either end of the stack. The con- 
dition i -I- d = h q- 1 is allowed, and it means that the automaton has left the right 
end of the input tape. Condition (2) permits tile device to write on the right end of 
the staek, where writing ~ is actually erasing. 

Note that  A is unable to write in the interior of the stack, and it "blocks" if the 
stack becomes empty. 

The notation for describing a sequence of movements of A is now given. 
Definition: For each x, y in (~ U {¢, $})*, and wl,  w2, wl', w2' in P*, let 

(q, xy, wl]w2) ~ * (q', y, wl']w2') 

if there e x i s t k > 0 ,  f i , g ~ , a n d h ~ f o r 0 < i < l c s u c h t h a t f 0 =  q, g0= xy, ho= 
f f ! 

wl]w2, fk = q, gk = y, hk = w~ lw2, and (f~, gi,  hi) ~ (fi+l , g~l , hi+l) for 
O < i < k .  

The final states in a one-way sa are used to "accept" a set of words by the follow- 
ing procedure. 

Definition. Aword  x in 2"  is accepted by a one-way sa A if 

(q0, CxS, z01) ?* (q, ,, w,lw ) 

for some q in F and some w~, w2 in I'*. The set of words accepted by A, denoted by 
T(A) ,  is called a one-way sa language (abbreviated language). 

We now specialize the model to be "deterministic" in nature, i.e., for each (q, a, Z) 
in K X (2~ U {¢, 8}) X F, there is to be one and only one "next move"  which is 
possible. 

Definition. A deterministic one-way sa is a one-way sa A = (K,  1~, ¢, $, F, 
~, q0, Z0, F)  with the following properties: 

(a)  $ (~(q, a, Z) )  = 1, 7 for each (q, a, Z) in K X (~ U {¢, 8}) X r .  
! 

(~) If s ~(q, a, Z0) = (d, q ,  e, y),  then y = Zow for some w in r*.  
Condition (~) prevents the stack from being emptied. (The  leftmost stack sym- 

bol is always Z0). 
Definiton. A language L is called a determinististic language (abbreviated D- 

language), if there is a deterministic one-way sa A such that  T(A)  = L. 
An important  specialization of a one-way sa is now noted. By restricting the 

stack to function as a pushdown store, i.e., to be read only at the right end, we ob- 
tain a pushdown automaton. Specifically, a pushdown automaton (pda)  is a one-way 
sa with the restriction that  (d, q!, e, w) in ~(q, a, Z) implies e = 0.9 

To obtain the family of deterministic pushdown automata,  we need only start  
from a one-way deterministic sa. Specifically, a deterministic pushdown automaton 
is a one-way sa in which ~(q, a, Z)  = (d, q', e, w) implies e = 0.9 

In this paper, we are concerned with one-way sa and languages: We were led to 

7 For any  set  E, ~ (E) is the number  of elements  in E. 
8 We write ~(q, a, Z)  = (d, q', e, y) ins tead  of ~(q, a, Z )  = { (d, q~, e, y) }. 

The comparison is not  quite obvious, since a one-way sa has endmarkers  while pushdown 
au toma ta  customari ly  do not. Fur the rmore ,  there is a s l ight  d is t inc t ion between "e -moves"  
in pushdown au toma ta  and  moves in one-way sa in which d = 0. I t  is not  difficult to prove t h a t  
the families of languages accepted by these two types of device are identical .  
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these concepts by specializing to the one-way case the stack automata and lan- 
guages accept, ed by stack automata as discussed in [5]. A practical reason for study- 
ing one-way sa is that  more of Ai,GoI~ can be recognized by these devices than by 
pushdown ~mtomata. (As an example of this, consider the role of declaration state- 
ments. As noted in [5], a (two-way) stack automaton c~m search symbol t~tbles and 
thus can recognize declaration statements. A (nondeterministle) one-way sa also 
can search symbol tables as follows: I t  guesses that it is reading an identifier on the 
input tape, it has its stack pointer move left into the stack, and then it guesses that 
it has found the proper entry in the proper symbol table. Bad guesses lead to un- 
fruitful computations of the sa.) As is well known, ALOOL with the constraint that 
identifiers must be declared cannot be entirely recognized by a pushdown automa- 
ton. Thus sets accepted by one-way sit may be better approximations to currently 
used programming languages than sets recognized by pushdown automata. Unfor- 
tunately, since ALGOL does not require declaration of all identifiers before their use, 
it ~ppe~rs that  one-way sa cannot accept all ALGOL progr~ms. 

2. Closure Properties of Languages 

There are a number of operations which have proved to be import~mt in tile theory 
of context-free languages. ~° In this section, many of these operations are shown to 
preserve languages. 

For technical reasons it is convenient to introduce two variations of one-way sa, 
namely, the "one-way sa without left endmarker" and tile "one-way sa without 
endmarkers." The latter device is useful in a number of proofs about languages. 

Definition. A one-way sa without left endmarker is an 8-tuple A = (K, E, $, 
P, ~, q0, Z0, F) ,  where K, ~, $, F, qo, Z0, F are the same aS in a one-way sa, and 
is a function from K × (Z U { $} ) × F into the set of finite subsets of { 0, 1 } × K × 
{ - 1 ,  0, 1} × F* satisfying (*) in the  definition of a one-way sa. 

The definitions of I D ,  ~-, I-*, and acceptance for a one-way sa without left 
endmarker are the same (with obvious modifications) as for a one-way sa. For 
example: 

Definition. A word w in ~* is accepted by a one-way sa without left endmarker 
A = (K,  ~, $, F, ~, qo, Zo, F) if (qo, w$, Zol) ~ * (q, e, Y~ly2) for some q in F, y~, y2 
in P*. 

A "one-way sa A = (K, ~, P, 8, q0, Z0, iv) without endmarkers" is defined 
analogously. The definitions for ID, ~, ~ * and acceptance are also defined anal- 
ogously. 

We shall show (Lemma 2.3 ) that  the  sets of words accepted by the two variations 
of one-way sa coincide with the languages. This permits us to simplify certain 
arguments. 

LEMMA 2.1. I f  L = T( A ) for some one-way sa A, then L = T( B ) for some one-way 
sa B without left endmarker. 

PaooF. L e t L  = T(A) for the o n e - w a y s a A  = (K, 2 ; , ¢ , $ , r ,  8, q 0 , Z 0 , F ) .  
Let B = (KB, 2;, $, F, 8~, q0, Z0, F~),  where K~ = K U { (~ [ qin K}, each q a new 
symbol, FB = F if e is not in T(A ), Fg = F U { qo} if ~ is in T(A),  and ~, is defined 
as follows for each (q, a, b, Z) in K X ~ × ( Z U  {$}) × F: 

(1) ~(q0, $, z )  = {(1, ~o, o, Zo)}, 

~o Context-free languages may be characterized as those sets accepted by pushdown ~utom~tt~. 
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(2) ~B(C~, a, Z) = {(0, (j, e, y) ] (0, q', e, y) in ~(q, ¢, Z)} 

U {(O,q ' ,e ,y )  l (1,  q ' , e , y )  in 8(q, ¢, Z)}. 

(3) 8,(q, b, Z) = 8(q, b, Z).  n 

Intuitively, B operates as follows. Rule (1) ensures that  e is in T(B)  if and only 
if e is in T(A) .  Given a non-e input word w, B first simulates the action of ¢ in 
A (rule (2)) .  When A moves to the right of ~, B records this by changing to states 
q and then mimicking A (rules (2) and (3)) .  Formally, for a in ~ and w in ~*, 

(qo, Caw$, Zol) ~ *a (qi,  Oaw$, yl]yi') 

~-a (q2, aw$, y~]y~') 

,lyJ) 
if and only if 

( qo, aw$, Zol) }-B (qi ,  aw$, YilYi') 

~ B ( q2 , aw$, Y21Ys' ) 

~-,* (q3 , e, Y31YJ). 

Thus T ( A )  = T(B) .  
LEMMA 2.2. I f  L = T( A ) for some one-way sa A without left endmarker, then 

L = T ( B )  for some one-way sa B without endmarkers. 
PROOF. L e t A  = ( K , ~ , $ , r , ~ , q 0 , Z 0 , F ) . L e t B  = ( K ~ , ~ , F , ~ B , q 0 , Z 0 , F B ) ,  

where~oand ~l are new symbols, KB = (K  X ~) U K U  {~0, ~l}, FB = {qo, (ql} 
if e is in T(A ), F~ = { ql} if e is not in T(A) ,  and 8B is defined as follows: 

(1) ~z((]0, a, Z) = ~(qo, a, Z) U {(0, (q', a),  e, y) I(1,  q', e, y) in 8(q0, a, Z)}. 
(2) ~B(q, a, Z) = ~(q, a, Z) [J {(0, (q', a),  e, y) I(1,  q', e , y )  in 8(q, a , Z ) } .  
(3) ~B((q, a),  a, Z) = {(0, (q', a) ,  e, y) I(0,  q', e ,y)  in S(q, S, Z)} 

U {(1, ~1, e, y) I (1, q', e, y) in ~(q, $, Z) and q' in F}. 
Intuitively, B starts out  by imitating A. If the next input in A is to be $, then B 
goes to a state (q', a) and simulates the movement of A under $ while B still scans 
a. Formally, for w in Z* and a in ~, 

(qo, waS, Zol) ~ *a (q~ , aS, ylly~') ~ A (an, $, Y~ly~') 

~-*A (q~, ~, y31y3') for some q3 in F 

if and only if 

( ~o, wa, Zol) ~ B* (q~ , a, Y~lY~') ~ z ((q2, a), a, y21y2') ~ ~* (~1, e, Y~lYa'). 

Furthermore, e is in T ( A )  if and only if e is in T(B) .  Thus T ( A )  = T(B) .  
We ~re now able to show that  the families of sets accepted by the various kinds 

of one-way sa coincide. 
LEMMA 2.3. The following three statements are equivalent for a set L c ~*: 
(1) L = T( A ) for some one-way sa A. 
(2) L = T( A')  for some one-way sa A'  without left endmarker. 

= d "  (3) L T ( A " ) for some one-way sa without endmarkers. 

~ ~(q, a, Z) is always to be 4, unless otherwise stated. 
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P~oo~ ~. By Lemmas 2.1 and 2.2, (1) implies (2) and (2) implies (3). I t  thus 
sufffices to show that  (3) implies (1). Therefore suppose that A" = (K",  2, F, ~", 
q0, Z0, F) is a one-way sa without endmarkers. Let A = (K", 2, 0, S, P, 3, qo, Zo, F),  
where a(q, a, Z) = a(q, a, Z)  for each (q, a, Z) in K" X 2 X P and a(q, ¢, Z) = 
5(q, 8, Z) = {(1, q, 0, Z)}. Clearly T ( A )  = T ( A " ) .  

We summarize some obvious properties about one-way sa and one-way sa without 
endmarkers in the following two lemmas. These lemmas assert that  any language 
may be accepted: 

(a) by some one-way sa (without endmarkers) in which the initial state occurs 
only at the beginning of the computation; 

(b) by some one-way sa (without endmarkers) in which the longest "write 
instruction" has length at most two; 

(c) by some one-way sa (without endmarkers) with a leftmost symbol on the 
stack which (i) is never erased, and (i t)appears only as the leftmost symbol on the 
stack; 

(d) by some one-way sa A (without endmarkers) with the following properties: 
(i) A has a unique final state, and (it) A accepts a word if and only if A ends in the 
final state with exactly Z0 on the stack; 

(e) by some one-way sa (without endmarkers) with properties (a ) - (d) .  
The above properties a1~ formalized for one-way sa in the following lemma. 
LE~t~,IA 2.4. Let A = ( K, 2, ¢, 8, F, 8, qo , Zo , F) be a one-way sa. Then: 
(a) There exists a one-way sa A, = (K1, ~, ¢, S, I', 51,00, Zo , F) such that T(A~) 

= T ( A )  and for each q in K1, w~w2 in ¢~'8, wl ¢ e, 

(~o, w~w.2, Zd)  ~ ,  (q, w2, y~ly2) 

implies q ~ qo • 
(b) There exists a one-way sa A2 = (K2, ~, ¢, 8, F, ~2, q0, Zo, b') such that T(A2) 

= T ( A )  and (d, q', e, y) in 62(q, a, Z) implies I Y [ -< 2.~2 
( e) There exists a one-way sa A3 = (K~ , Z, ¢, $, F~ , ~3 , ~o , Zo , F) such that T( A~) 

= T ( A )  and 

( qO, ~WlW2, 201)  ~ $A a (q,  'W2 , YllY2) 

implies yly~ is in Zo( P - {Zo} )*. 
(d) There exists a one-way sa A4 = (K4,  ~, 0, $, P4,64, ~o, 20, {f}) such that 

(i) T(A4) = T ( A ) ,  (it) w is in T(A4) fraud only ff  

(qo, ¢w8, 2ol) (f, 201), 

(iii) 64(f, a, Z) = 4~ for all a and Z, and (iv) ( d, f ,  e, w) in 6~(q, a, Z) implies d = 1, 
e = 0, a n d w  = Z = 20. 

(e) There exists a one-way sa A~ = (K~, 2, ¢i, 8, r~, 6~, ~0, Z0, F~) such that 
T( A~) = T( A ) and A~ satisfies (a)- (d) .  

PROOF. We give the construction of each one-way sa. The proof that  each 
device has the desired properties is clear and is omitted. 

(a) Let K~ = K U { q0}, where 00 is a new symbol. Let 6~(q, a, Z)  = ~(q, a, Z)  
and ~l(O0 , a, Z0) = {(0, q0, 0, Z0)} for all q it~ K, a in Z, U {¢, 8}, and Z in r .  

te For each word y, 1 Y [ denotes the length of y. 
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(b)  For  each (d, q', e, Z1 . •. Zr) in ~(q, a, Z) ,  (i) if r < 2, let (d, q', e, Zt  • • • Z,.) 
be in S~(q, a, Z)', (ii) i f r  > 2, l e tq~ ,  1 < i < r - .,') be new symbols  and let 

Z '~ , '~ Z _ (0, ql, 0, ~iZ~) be in 82(q, a, Z)  (0, ct~+,, O, Z.~+,,~+~) be in ~(q~, a, Z ~ i ) ( 1  < i 
< r - 3), and (d, q', e, Z~_iZ~) be in &(q~_~, a, Z~_i). 

Let  K2 = K U {q~] q~ defined above}. 
(c) Let  Ka = K O { ~o} and I'a = F U {Zo}, where ~70 and 20 are new symbols.  

Le t  8a( qo, a, Z0) = {(0, qo, O, ZoZ0)} and 8a(q, a, Z )  = 8(q, a, Z)  for e a c h q  in K, 
a i n 2  U { ¢ , $ } , a n d Z i n P .  

(d)  Wi thou t  loss of general i ty we m a y  assume tha t  A satisfies (c) .  Let  K4 = 
Ka U {q, f}, and P4 = I'a , where q and f are new symbols.  For  each q in K and 
a i n 2  U {¢, 8}, let  (i) 84(q,a ,Z)  = 8a(q,a ,Z)  U {(0, ( t ,e ,y)  I ( l , q ' , e , y ) i n S a ( q , a , Z )  
and  q' is in F} for each Z in P; (ii) 84( q, a, Z) = {(0, q, 1, Z ) ,  (0, q, O, e)} for each 
a in r - {201 ; ( i i i )  8~( 0, a, 20)  = { (1 ,  f, O, 20) }. 

(e) The  proof of (e)  follows from the fact  t ha t  each of the construct ions in 
( a ) - ( d )  may  be carried out  wi thout  des t roying any of the other  properties. 

The  analogue to L e m m a  2.4 for one-way sa wi thout  endmarkers  is now given. 
I,EMMA 2.5. Let A = ( K, 2, P, 8, qo , Zo , F)  be a one-way sa without endmarkers. 

Then: 
(a) There exists a one~way sa A1 = (K1,  ~, F, 81, #/o, Zo, F1) without endmarkers 

such that T(  A1) = T(  A ) and for each q in K1,  wl ~ e, wlw2 m 2; , 

( ~o, wlw,2, Zol) ~ *a~ (q, w~, YllY2) 

implies q ~ qo. 
(b) There exists a one-way sa As = ( K2 , ~, F, 82 , qo , Zo , F) withoutendmarkers 

such that T(A2) = T( A ) and ( d, q', e, y) in 8:(q, a, Z )  implies I Y I -~ 2. 
( c) There exists a one-way sa A~ = (Ka , E, Fa , 8a , ~o , Zo, F) without endmar/cers 

such that T(  Aa) = T ( A )  and 

(0o, wlw: , 2ol) ~ ~ (q, w~, ylly~) 

implies Y~y2 is in Zo(F -- {20} )*. 
(d)  There exists a one-way sa A4 = (K4 ,  ~, P~, 84, .qo, Zo, {f}) without end- 

marlcers such th, at (i) T(A~)  = T ( A )  - {e}, (ii) w is in T(A~)  i f  and only i f  

(q0, w, 201) ~* ~, (f,  ~, 2ol) ,  

and (iii) &(f, a, Z)  = rb for all a and Z. la 
( e) There exists a one-way sa A~ = (K~,  E, I'~, 8~ , qo , 20 ,  F~) without endmarkers 

such that T(A~)  = T ( A  ) - {e} and A~ satisfies ( a ) - ( d ) )  a 
PnOOF. The  proof is a trivial modification of L e m m a  2.4 and is omitted.  
The  first result on operat ions concerns the intersection of a language and a regular  

s e t .  ~4 

13 Note that e cannot be it, T(A4) since (~o, e, ~o{) }*(q, e, Y~lY~) only if q = {o, y~ = 7~o , 
and y~ = e. Similarly e cannot be in 7' (A~). 
~ A finite-state automaton (abbreviated fsa) is a 5-tuple A = (K, 2, a, po, F), where K and 
are finite nonempty sets (of states and inputs respectively), a is a function from K X 2 into K,  
p o i s i n K ,  a n d F C K .  The function a is extended to K X z* by defining a(q,e) = q and 
6(q, xa) = 8[~(q,x),a]foreach (q,x,a) i n K X  :~* X :~.Aset R ~ Z* is said to be regular if there 
exists an fsa A = (K, ~, ~, po, F) such that R = T(A), where T(A) = {x [ 5(p0, x) in F}. 
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THEOt{E~I 2.1. I f  L is a language and R is a regular set, then L n R is a [a'~guage. 
Pi~oor. Let  L = T ( A ) ,  where A = (Ki ,  .E, ¢, S, F, ~ ,  q0, Z0, F~) is a oile-way 

=, , ~ mapping sa. Let R = T(B) ,  where B = (K,, E, ~ ,  p0 F2) is an fsa. Lxtend ~2 eo a 
of K~ X (.2 U {¢,S}) by the condition ~(q, ¢) = ~2(q, S) = q f o r e a c h q i n K ~ .  
Define C = (K~ × K 2 , 2 ,  ¢, S, F, ~, (qo, po), Zo, 1"~ X F2), where ~ is defined as 
follows: For Bach (q, a, Z) in K1 X (2 U {¢, 8}) X P and e~eh p in K~, 

6((q, p) ,  a, Z) = {(0, (q', p) ,  e, y)l(0, q', e, y) in ~t(q, a, Z)} 

U {(1, (q', ~2(p, a ) ) ,  e, y)l(1,  q', e, y) in ~(q, a, Z)}. 

Clearly T(C) = T ( A )  n T (B)  = L n R. ~ 

COROLLARY 1. L -- R is a language for each language L and each regular set R. 
PROOF. Since R is regular, i~* - R is regular [61. Then L - R = L n (E* - R) 

is a language by the theorem. 
COROLLARY 2. I f  L is a D-language and R is a regular set, then L N R and L -- R 

are D-languages. 
PROOF. Let  A and C be as in the proof of Theorem 2.1. If L is a D-language, 

then A is a determiaistic one-way sa. Clearly C is deterministic, so that L f'l R is 
D-language. Since the complement of a regular set is regular [6], L - R = 
L f'/( E* - R) is also a D-language. 

We now consider the basic, operations of union, product, and . .  First, however, 
we prove ~ result involving context-free languages. 

THEORE~ 2.2. Let L C E* be a context-free language. For each a in ~, let ~ be a 
finite set and La ~ Ea* be a language. Then 

H = { x i . . .  w i n  > O, a t , . . . ,  a, in E, xi in L , j ,  a l . . .  a, in L} 

is a language. 
PtmOF. L e t L =  T ( A ) ,  whereA = (K,  2, F , ~ , q o , Z o , F )  isapda.  Without loss  

of generality, we may assume that there is no element a in E such that  e is in L~. 
(For otherwise, let r(a) = {a} if e is not in L~ and r(a) = {e, a} if a is in L~. Then 
r(L)  = U~...~,~in~. r(a~) . . .  r(a~) is context-free and 

H = { x l . . .  x n l n  >_ 0, a l , - ' .  , a .  in ~, 

xi in L ~ -  {el, al . ."  a, in r(L)} . )  

Then, for each a in E, L, = T(A~),  where A~ = (K~, E~, F~, 6~, q0~ , Z0~,, {f~}) 
satisfies Leinma ') ~ " ~.o//e), arid all the Ko,  K, I'~ r m'e pairwise disjoint. Let (70 be a 
symbol n o t i n K  U UainZ (K~ X K) U (~ X K).  Let  A be the one-way sa without 
left endniarker (K, 2, S, P, ~, q0, Z0, I?), w h e r e / (  = {qo} U K  U U~ (Ko X K )  
U ( E X K ) ,  P = F U U ~ I ' ~ ,  2 =  U~E~, l ~ = F U { ~ o } i f e i s i n L a n d t ~ = F  
if e is not in L, and ~ is defined as follows for (a, b, q, Z) in E X ~2 X K X F: 

(i) (a) 3(~0, b, Z0) = {(0, (q0~, q0), 0, ZoZo~)l cinZ}.  
(b) 3(qo, 8, Z0) = {(1, q0,0, Z0)}. 

(it) For Z~ in I'~ and q~ in K~, 
~((q~,, q), b, Za) = {((l, (qa t, q), e, w)](d,  ([a t, e, ?D) in 6a(q~, b, Z~)} 

U {(1, (a, q), 0, e)l( l ,  f~, 0, Za) in 6~(q~, b, Za)}. 

~ The proof could be simplified slightly by considering one-way sa without endmarkers. The 
present form is given in order to obtain Corollary 2 to Theorem 2.1. 
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(iii) 3((a,  q), b, Z) = {(0, (a, q'), 0, w)l(0 , q', 0, w) in 6(q, a, Z)} 
U {(0, (qo~, q'), O, wZe~)l( 1, q', O, w) in ~(q, a, Z ) ,  c in "21. 

(iv) $((a, q), 8, Z) = {(0, (a, q'), 0, w)l(O, q', O, w) in ~(q, a, Z)} 
U {(1, q', 0, w)l(1 , q', 0, w) in ~(q, a, Z)}. 

Intuitively, A starts by (i),  simulates A~, searching for w in L , ,  by (ii), and 
simulates A on a by (iii) and (iv). Formally, the construction does the following. 
By (i-b), e is in T(~[) if and only if e is in H. By (i-a), 

( ~o, x$, Zo]) ~ x ( (qo~, qo), z$, ZoZool) 

for all a in ~ ~md x ~ e in 2. By (ii), when x ~ e, 

( (qo~ , q), xy$, uZo~l) ~ ~ ( (a, q), y$, ul)  

if and only if x is in L~. By (iii) and (iv),  when x ~ e, 

( ( a ,  q ) ,  x$ ,  u ] )  ~ ( i i i )  ((qoc, qt), x$, ~Zocl) 

if and only if 

(q, a, ul) ~ (q', ~, vl) 

((a, q), $, ul) ~(i~) (q', e, vl). 
if and only if 

r.* F o r k  > l a n d e a c h x i i n ~  , 
$ 

( ~ 0 , x l " ' ' z k $ , Z 0 1 )  ~ ( ( a l ,  q0), x2 . . . xk$ ,  Z0~) 

~ ((a2,  q,), x3 . . .  x~$, u,1) 

~ (q~, ~, u,1), 
where the states (ak, q,-1) arc precisely those states in Z X K which follow steps of 
type (ii), if and only if 

( q 0 ,  a l  ' ' '  ak$, Z01) 

and xi is in La~ for each i, 1 < i <  

a* (ql , as . . .  ak$, ul]) 

a* ( q2 , a3 . . . ak$, u2] ) 
. . .  

a* (qk-1, ak$, u~_l] ) 

_ _ k. Thus T(A)  = H, so that H is a language. 
Since {a} U {b}, {ab}, and a* are context-free languages for 2~ = {a, b}, we obtain 

as a corollary: 
THEOREM 2.3. The fami ly  of languages is closed under union, product, and ,.  
We now introduce a transformation device which preserves languages. 
Definition. A sequential transducer is a 5-tuple S = (K, ~, A, H, So) where 

(i) K, ~, and A are finite nonempty sets (of states, inputs, and outputs respec- 
tively) ; 

(ii) so is in K (the start state);  
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(iii) H is a finite subset of K X E* X,5* X K. 
The sequential transducer transfornls words as follows: 
Definition. Let S = (K, E, A, H, so) be a sequential transducer. For each u ill 

~*, let S(u )  be the set of words v with the property that there exist k > 1 and words 
u l , - "  ,uk in  " v l , . . .  , v ~ i n i * , a n d s l , . . . , s k i n K s u c h t h a t u  = u ~ . . - u k ,  
v = vl . . .  vk, and (si,U~+l ,v~+~, s~+l) isin H f o r e a c h 0  _< i < It. Foreach U c E*, 
let S ( U )  = U~,~v S(u) .  

Given a sequential transducer S = (K, ~, A, H, So), there exists a sequential 
transducer T = (K,  2, A,/~, ~o) such that  (i) S (U)  = T(U)  for all U ~ 2" and 
(ii) (s, u, v, s') in /~  implies s' ~ ~0. (For  let a0 be a new symbol, [~ = K U {~o}, 
and Li = H U {(50, u, v, s)l(so , u, v, s) in H}.) 

TI-IEORE~,I 2.4. S ( L )  is a language for each sequential transducer S and each 
language L. 

PROOf. Let L be a language. Then L = T ( A )  for some one-way saA = 
(K1,2~, F, al, qo, Zo, F1) without endmarkers. Let S = (K2, %, A, H, So) be a 
sequential transducer. As noted above, there is no loss of generality in assuming that 
(s, u, v, s') in H implies s' ~ So. We may also assume that $ is not in A and that  A 
satisfies (c) of Lemma 2.5. Let 

m = m a x { 1 , 1 u l ,  lv[ I ( s , u , v , s ' )  in H forsome s ,s '  ia K}. 

U m 2~i U m ~i Let Z,~ = ~o and~,~ = ~=0 . L e t B  = (K,~,$,r,a,(qo,so,~,~), Zo,P) be 
the one-way sa without left endmarker with .K = K~ X K2 X 2~,, X A,,,, l ~ = F~ 
X (K2 - {So}) X {e} X {e}, and a defined as follows: 

(i) For each ( q , a , Z )  inK1 X (A U {$}) X r a n d e a c h s i n K 2 ,  

6((q, s, e, e), a, Z) = {(0, (q, s', u, v), 0, Z) l (s  , u, v, s') inH}. 

(ii) For each (q, s, a, c) inK1 X K~ X % X (A U {S} ) and for each (% y) in 
~m X A., such that  I x] < m and I Y t ~ m, 

~((q,s,  ax, y ) , c , Z )  = {(0, (q ' ,s ,  ax, y ) , e , w ) l ( O  , q ' , e , w )  in a l (q ,a ,Z)}  
U {(0, (q', s, x, y), e, w)l(1, q', e, w) in al(q, a, Z)}. 

(iii) For  each (q, s, b) in K~ X K2 X ~ and each y in ~,~, with ] Y I < m, 

a((q, s, e, by), b, Z)  = {(1, (q, s, e, y), 0, Z)}. 

(iv) For each (q, s, Z) inK1 X K 2  X F, 

a((q, s, e, e), $, Z) = {(1, (q, s, e, e), 0, Z)} .  

Intuitively, B operates as follows. B simulates the action at state s (i.e., the state 
of B is (q, s, e, e)) by guessing that  S takes a word u into v (formally, (s, u, v, s ~) 
is in. H, i.e., by ( i ) ) .  By (ii), B simulates the action that A might take on u without 
advancing the input tape. In (iii), B advances the input tape over S(u) .  The cycle 
is repeated until $ is reached, at which time (iv) is applied. Formally, v is irl S(L )  
if and only if there exist u l , . . . ,  u~, ~ 1 , ' " ,  v~, s ~ , . . . ,  s~, q l , ' "  , q~, 

. ! yo, • • • , y~, y0', • • , y~' with the following properties: y0 = Zo ; y0 = e; q~ is in 
F~ ; each y~y( is in F* - {e} (by (c) of Lemma 2.5); 

! 
(q~, u~+~ . . .  u~, Y~lY,') ~* (q~+~, u~+2 " "  u~, Y~+llY~+~) for 0 _< i < /c 
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(so t h a t  ut • • • u,¢ is in L) ; 

( s ~ , u c ~ , v i + ~ , & + i )  is in H for 0 < i < k 

(so t ha t  v~ . . .  v~ is in S(Ul . .  • uk); ttnd v = v~ • • • v/,. The  l a t t e r  occurs if and  only if 
there  e x i s t : u t , . - -  , ua. , v, , . . . , v~ , s~ , . . . , & , qz , " . " , q, , yo , . . . ,  >: , 

i 
Yo, • " " , Y~.' wi th  the  following proper t ies :  yo = Zo ; Yo = e; q~ is in / ; ' ,  ; each y,y~ 

is in 17" - {d ;  

, " ' '  V t, / ( ( (~i ,  Si ~, ~), Yi+i IzS, y i ly i  ) 

f o r 0  < i <  k ; a n d  

~ ,  ((q,: ,  s~+l u~+l ,v~+~), v~+~ ~$, Y~lY,:) 

! 

( (q,,, , , ,  , ~, ~),  s, > l y / )  ~ .  ( (qk,  s,. , ~, ~),  ~, :,/~t~j/), 1' 

which, as is easi ly seen, occurs if and only  if v is in T ( B ) .  

A number  of i m p o r t a n t  special  cases follow from the theorem on sequential 
transducers. 

Definition. AgeneraIized sequential machine ( a b b r e v i a t e d  gsm)  is a 6-tuple 
S = (K ,  ~, A, 6, N, q0), where 

( i)  K,  ~, and A are  finite n o n e m p t y  sets (of  states, inputs ,  and outputs re- 
spec t ive ly)  ; 

(i i)  ~ is a function from K × ~ into K (next  state func t ion) ;  
( i i i)  k is a funct ion from K X ~ into  A* (output  func t ion) ;  
( iv)  q0 is in K (start s ta te ) .  

a n d k a r c e x t e n d e d t o K  X 2 ; * b y l e t t i n g S ( q , e )  = q, Mq ,  e) = e, ~(q, xa) = 

~[~(q, x) ,  a], and Mq,  xa )  = Mq,  :c)k(~(q, x),  a)  for each (q, x, a)  in K X Z:* X Z. 
THEORE~,~ 2.5. I f  S = ( K ,  "2, z~, ~, k,  qo) is a gsm and L is a language, t/~en 

S ( L )  = {k(qo,  x) l  x in L I is a language. 
PROOF. iLet~ S '  be the  sequent ia l  t r ansduce r  ( K ,  2~, ,~, H,  q0), where H = 

{(q, a, k (q ,  a) ,  6(q, a) ) t (q,  a) in K X .El U {(q, e, ~, q)l q in K I .  F o r  each x in 2:*, 
S ( x )  = S ' ( x ) .  The  resul t  then follows from Theo rem 2.4. 

Langt lages  are also preserved under  inverse  gsm. 
Tu~om¢~,I 2.6. I f  S = ( K ,  E, A, ~, X, qo) is a gsm and L is a language, then 

S-'(L) = {x in ~*]k(qo,x) in L} 

is also a language. 

PROOF. Let  S t be the  sequent ia l  t r ansduce r  ( K ,  ~, z~, H ,  qo), where  

II = { (q ,h (q ,  a),a, 6(q,a))l(q,a) in K X Z} U { ( q ,  e, e, q ) l q  in K}. 

Clea r |y  S ' ( x )  = S - ' ( x )  for  each x in 2:*. The  resul t  then  follows f rom Theorem 2.4. 
F r o m  Theorems  2.5 and  2.6 there  immed ia t e ly  follows: 
COROI'mARY. I f  h is a homomorphi#m ~7 and L is a language, then both h( L )  and 

h - ' (  L ) are languages. 

~6 Note that $ is needed in order to serve as input in case v~:_: • • • vk = e for some j .  
17 A homomorph~sm is a mapping h from .E* into A* such that h(¢) = e and h(at • .. ak) = h(al) 
• .. h(ak), each ai in ~. 
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Another interesting opera t ion  which preserves  languages is "quot ien t  by a regular  

THEO*~':~ 2.7. Let L be a language and R a regular set. Then 

L / R  = { w l w y  in L ¢brsome y in R} 

and 

R \ L  = { w l y w  ira L for so'me y in R} 

are languages. 
DmOF. Let  L ~ Z* be a language and c a new symbol .  Let  h be the homo-  

morphism defined by  h(a)  = a for eaeh a in Z, and h(e) = e. Consider the gsm S = 
({q0,q ,} ,21J{c} ,A,~ ,X,  q 0 ) , w h e r e f o r e a c ' h a i n Z ,  ~(qo,a)  = go, ~(qo,e) = q t ,  
~i(qt, a) = ~(ql ,  c) = q i ,  ~.(q0, a) = a, andX(q0,  c) = X(ql ,  a) = X(q,,  c) = e. 

Clearly S ( x )  = x and S ( z e y )  = x for each x in .2,* and y in (~  U {e})*. Since 
1 /=  h-~(L) n Z*eR is a language,  L / R  = S ( L ' )  is also a hmguage. 

The proof t ha t  R \ L  is a language is similar. 
COROLLARY. I f  L is a language, then so are 

In i t (L)  = { u l u v  in L for some v in 2"}, 

Fin(L)  = { v l u v  in L for some u in Z*}, 

and 

Sub(L)  = {v uwv ire L for some u , v  in Z*}. 

PROOF. Ini t  (L)  = L /~* ,  Fin (L)  = ~* \L ,  and Sub (L)  = li'in ( In i t  (L ) ) .  
The family of languages is closed under  reversal.  TM To prove this, we "run"  a one- 

way sa wi thout  endrnarkers  "backwards . "  
THEORE~,t 2.8. I f  L is a language, then so is L R. 
PROOF. Let  L = T ( A ) ,  where A = (K,  Z, F, ~, qo, Z0, F)  is a one-way sa with- 

out endmarkers .  We m a y  assume tha t  e is not  in T (A  ). (For  otherwise T(A ) - { e} 
is a language, we (:an show tha t  ( T ( A )  -- {d )r~ is a language, and 7 ' (A)  'e = ( T ( A )  
- {e} )~ U {e} is a language. )  We m a y  als0 assume tha t  A satisfies (e)  of L e m m a  2.5. 
Thus F = {f} for some f in K. Let  

B = (KB, Z, ¢, $, F, ~ , ,  (f,  ¢, e, 0),  Zo, {)q}), 

where fl  is a new symbol ,  Ih = I '° U p! U P 2, 

K ,  = ( K  X (E U {¢, $}) X r~ X /0, 11) U {/11, 

and ~, is defined as follows: 
(i) Suppose (d, q', e, y) is in ~(q, a, Z ) .  For  each b in Z U {¢} and Y in P: 

(a) if y is in F, let, (d, (q, a, ~, 0) ,  - e ,  Z) be in a,((q', b, e, 0), b, y); 
(b) i f y  = e, let (d, (q, a, e, 0),  - e ,  Y Z )  be in 5B((q', b, e, 0), b, Y); 
(c) i f y =  Y t Y 2 ,  Y l a n d Y 2 i n P ,  l e t ( O , ( q , b ,  Z Y ~ , d ) , O , e ) b e i n ~ , ( ( q ' , b , e , O ) ,  

b, Y2) and (d, (q, a, e, 0 ) ,  O, Z)  in ~,( (q, b, Z Y , ,  d),  b, Yi). 
(ii) (1, f~, 0, Z0) is in ~B((q0, b, e, 0),  b, So). 

(iii) (1, f , ,  0, Z0) is in ~,(f~,  $, Z0). 

18 Let E be an abstract set. Let e a = e and (xa) R = ax R, for a in E, and x in E*. For U ~ E*, 
let U a = {w R ] w in U}. U R is called the reversal of U. 
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In tu i t ive ly ,  (q, a, X ,  d) is an at talogue of q in A a a d  represen ts  the  fact  & a t  in A, 
a is app l i ed  at  q. ( a ) ,  ( b ) ,  and  (e)  of ( i )  enable  B to s imula te  " m o v i n g  backwards"  
in A. In  pa r t i cu la r ,  suppose  that; a t  s t a l e  q, under  i n p u t  a, ~rlCt reading  Z on the 
s tack ;  A moves  to q' and  wri tes  y on the  s tack.  Then a t  (q',  b, e, 0),  an  analogue to 
q', under  the  influence of y on the s tack;  B goes to an analogue  of q which acts  only  
under  a. F o r m a l l y ,  w is in T(A)  it' and ot~ly if there  exist  q , ,  • . • , qe, co, • • . , a~: ~, 

t 1 

"w0, . ' .  ,w~-~,  5 ' o , b ' 0 , ' " ,  yk ,  Ya, such t ha t  qk = f ,  Yo = y~ = Zo ,  

Yo = y~ = e, aowo = w,  and 

(qo,  aow0, Yolyo') }-a ( q l  , a l w l  , y l l Y l ' )  

! 

A (qk--1 , ak_~we-~ , Ye-~IYe-~) 

This  hoMs if and  on ly  if there  exist  v~, - • • , vk-, such t h a t  vmw. i  = w for each i and  

( ( f ,  ¢, e, 0) ,  ¢'wre8, Z01) ~ (((1,,-~, ak-~,  e, 0) ,  ak-tvL~S, Yk-l lY;-1)  

}~ ((qk-~ ak-2 e, 0) ,  a '~ "" ' , , k-2vk-=~,  Yk--~Yk-2) 

~7, ((q,,, a0, ~, 0), aoS, y01y0') 

~,, ( k ,  s, Zol) 

b ~ ( k ,  ~, z01), 
i.e., w '~ is in T ( B ) .  

3. Operat ions W h i c h  Do No t  Preserve Languages  

Il l  this  sect ion we exhibi t  cer ta in  opera t ions  which do not  preserve languages.  This  
is done wi th  the help of a representa t ion  theorem for recurs ively  enumerab le  sets. 

D(~/irdtion. A phra,s.e structure grammar  is a 4- tuple  G = ( V, "2, P ,  z ) ,  where ( i )  V 
is a finite n o n e m p t y  set:, ( i t )  Z ~ V, ( i i i )  P is at finite set  of ordered  pairs  (u,  v), 
wr i t t en  u --* v, wi th  u in ( V  - E)*  - {el and  v in V*, and  ( iv )  (r is in V - E. 

A phrase  s t ruc tu re  g r a m m a r  selects a cer ta in  set  of words as follows. 
Notat ion.  Let 6' = ( V, 2 , / ' ,  ¢) be a phrase s t ruc tu re  g r ammar .  F o r  w, y in V*, 

w r i t e w = > y i f t h e r e e x i s t z t , z e , u ,  v s u c h t h a t  w = ztuz~ , y = z,vz2 , and u --~ v 

is in P .  Fo r  w, y in V*, wri te  w ~ y if there  exist  r > 0 and z0, . .  • , z,. such tha t  
z0 = w, z~ = y, and  z, =-~ z¢+~ for 0 < i < r. Le t  L ( G ) ,  cal led the  set "genera t ed"  

by (2, be the  set {x in Z *  l a & X}. 

T h e  following propos i t ion  is well known [2] :"For  L ~ X*, L = L ( G )  for some 
phrase  s t ruc ture  g r a m n m r  G if and  only if L is recurs ive ly  enumerable .  ~ 

We now associa te  a set of a special  h)nn  with each phrase  s t ruc tu re  g r ammar .  
Notation• Let  G = (V, X, P ,  o) be a phrase  s t ruc tu re  g r ammar .  Le t  c be a new 

symbol ,  P = { ui--~ v~ I 1 < i < k}, and  let  d~, • - • , de be k new symbols•  Le t  L i ' ( G )  

be the  set 

L ( ( G )  {wlui  ,e ,~ ",~ = & w c w e  v~ tel c w l , w ~  in V*, 

u i - ~ v i  in P,  1 < i <  k } * -  {el. 

t,~ See [3] fox" a def in i t ion and  a d i scuss ion  of reeurs ive ly  e n u m e m b l e  se ts .  
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LE~.~IA 3.1. LlI ( G) is a determi'nistic context-free l a n g u a S  ° for each phrase struc- 
ture grammar G. 

PROOF. Foru~- -~v i i nP ,  1 ~ i ~ k, letu~ = u~ • • • ui,,u) andv l  -- yil " " " Y i n ( i )  , 

each u~ and vii in V. ~ Let A = (K,  3t, F, ~, Z0, q0, If} ) be the deterministic pda :2 
with 3' = V U le, d~, . . .  , &~}, 

K = { q o , q l , q ~ , d , f }  O { s ~ s l l  < i < k, 0 < j < re(i)} 

U l t u [ 1  < i < k  , 0 < j ( n ( i ) } ,  

r = %~ U {Zo}, Zo being a new symbol, and ~ defined as follows: 
(i) 5(qo, a, Zo) = (qo, Zoa) for each a in V. 

3(qo, a, b) = (qo, ba) for each Rand b in V U {d~ [ 1 < i < k}. 
6(qo, c, b) = (ql ,  b) for each b in V U {d~[ 1 < i < k}. 

(ii) ~ ( q l , a , a )  = ( q l , e )  for e a c h a i n V .  
~(q~, e, d~) = (S~o, ~) for each 1 < i < ]c. 

(iii) ~(si~,e,u~(,~u)-j)) = ( s l u + l ) , ~ ) f o r e a c h l  < i < k ,  O < j < m ( i )  - 1. 
5(si(mu)-l), e, ui~) = (t~0, e) for each 1 <: i "< k. 

(iv) ~(ti], Vi(nU)-~'), a) = (t~U+l), a) for each a in V U [Z0}, 
l < i < k ,  O _ < j < n ( i )  - 1. 

~ ( t i ( nU) - l ) , v i l , a )  = ( q 2 , a )  for ~3eachl < i <  k, a i n V U { Z 0 } .  
(v)  ~(q~, a, a) = (q~, e) for each a in V. 

3(qe, e, Zo) = (f, Zo). 
(vi) ~(f, ~, go) = (qo, Zo). 

(vii) ~(q, a, b) = (d, b) for all (q, a, b) not previously specified. 
The pda A operates as follows: 
( 1 ) In (i),  A copies the input onto the stack until the symbol c is read. 
(2) In (ii), it checks the input against the stack until some d~ is read on the 

stack. The d~ is then erased. 
(3) Without  moving the input, A checks in (iii) to see if the word u~ is on the 

stack (erasing u~ in the process). 
(4) In (iv), A sees if rib is on the input while not altering the stack. 
(5) In (v) ,  A matches the input against the stack until c is read. 
(6) In (v) ,  A goes to an accepting state if c is read on the input and Z0 on the 

stack. 
(7) In (vi),  A then goes to the start state, the cycle (begimfing at step (1))  

being repeated. 
I t  is a straightforward matter  to verify that  T ( A )  = L~'(G).  
The following notation is useful. 
Notation. F o r a i n ~ Z ,  let d be a new symbol. L e t s  = e a n d ~  = d~ . . .  d~for 

each w = a~ .. • a~, all a~in 2~. For each U ~ ~2", let ~ = l~ I u in U}. For each 
phrase structure grammar G, let L~(G) = L11(G)(~)*. 

CO~OLL~nY. L~( G) is a deterministic context-free language. 
PROOF. (~) * is regular and L~'(G) is a deterministic eontext~free language. The 

~0 A set  L is said to be a deterministic context-free language if L = T(A) for some determinis t ic  

pda.  
~ By  definition of u phruse  s t r u c t u r e  g rammar ,  m(i) > 1 and n(i) ~ 0 for  each i. 
2~ We use the  definition of de terminis t ic  pd~ as given in [4] r a the r  than  the special izat ion of a 

de terminis t ic  one-way sa  given iu Sect ion 1. 
~ If  n(i) = O, this  becomes ~l(tio, e, a) = (q2, a). 
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result ~hen follows from the fact that  deterministic context-free languages are closed 
under product, on the right with regular sets [4, Theorem 3.3]. 

Notation. Let V be a finite se~ containing G and le~ c, dl ,  . . .  , dk be lc+l  new 
symbols. Let 

L(k ,  V) = {¢d,~c 1 < i < lc}{yly2cy2R djy~% l l _< j _< ]c, 

yl and y~ in V * } * { x c 2 ~ l x  in V*}. 

LEs.~a.IA 3.2. L(  k, V)  is a deterministic context-free language. 
PROOf. Let A be the deterministic pda (K, Z', F, 6, q0, Z0, {J'l, f2}), where 

K = { q o , q l , q 2 , d , f ~ , f ~ }  U {s}10 _< i ~  4}, 

r / =  V U 2 U { c , d ~ , - - . , d ~ } ,  

r =  V U ? U { z 0 } ,  

Z0 being a new symbol, and a is defined as follows (a and b are arbitrary elements 
in V): 

(i) ~(qo 
6(ql 

6(q2 
(ii) ~(so 

a(so 
~(s0 

(iii) 6(81 a, 
~(sl d, 

(iv) 6(s2 a, 
a(s2, d~ 

(v) 

(vi) 

(vii) (24) 

(viii) 

. ,  Zo) = (q~, Zo) 
di ,  Zo) = (q2, Z0) for 1 < i < k. 
c, Zo) = (so, Zo). 
a, Zo) = (So, Zoa). 
a, b) = (So, ba). 
c, a )  = (Sl , a ) .  

a) = (s2,  ~). 

a) = (s3, e). 
a) = (s2, e). 
, a) = (s~, a), a(s~, cl~, Zo) = (s~, Zo): 

a(s~, a, a) = ( ~ ,  ~). 
a(8~, ~, Zo) = ( £ ,  go). 
a(s4, a, a) = (s4, e). 
a(s4, c, Zo) = (so, Zo). 
~i(So, c, Zo) = (f2, Zo). 
~(f~ , d~ , Zo) = ( s4 , Zo) for 1 < i < k. 
~(q, a', Z )  = (d, Z)  for all (q, a', Z)  in K X Z' X r not previously 
defined. 

Intuitively, A operates as follows: 
(1) In (i), A checks to see if the first three input symbols are ~rd~c for some i. 
(2) In (ii), A copies the input symbols onto the stack until the symbol c is read. 
(3) In (iii) and (iv), it inatehes the input, against the stack until some d~ is 

read on the input. 
(4) In (iv), the d~ is read on the input without altering the stack. 
(5) Ill (vi), the input is again matched against the stack until the symbol c 

is read. 
(6) A then goes to So and cycles. 
(7) If  at step (3), a symbol d is read, then A goes to s3 where it compares, in 

(v),  cl on the input with b o n t h e  stack. 
(8) A accepts if, after reading the input, the stack is empty except for Zo. 

24 The rules in (vii) are needed in ease yly2 = e or x = e. 
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I t  is ~ straightforw~trd mat te r  to formally verify tha t  T ( A )  = L(k ,  V) .  The  

details are omitted.  
We now obtain  tt representat ion theorem for recursively enumerable sets. 
FH~OREi 3.1. For each recursively enumerable set E c 2 , .there exist deter- 

ministic context@°ee languages L~ and L2, and a homomorphism h such that 

E = h(Li  N L~). 

PROOF. Let  E = L(G) ,  where G = (V, 22, P, ~) is a phrase s tructure grammar .  
Let L~ = L~(G) and L2 = L(k ,  V ) ,  where k is the number  of product ions in P.  Let  
h be the homomorph i sm defined by h(d)  = a for each d in 2 and h(a)  = e for each a 

in V U {e, d l ,  " '  , d4 .  
Let  x be a word in E.  Then  there exist w¢~, w¢~, ugu), vgu) for 0 < j < m such 

t h a t  w01 = w02 = e, Ug(o) = ~ ,  WmlVg(m)Wm2 = X ,  

%OjlUg(j)?.~)j2 ~ ~ j l~ )g( j )Wj2  , 

with u,u) -~ v~u) in P,  for 0 < j < m, and 

%~)jlVg(]#{)j2 = %U(]+i)lUg(j+i ) W(]+i)2 

f o r l  _< j  < m -  1. For  each wl , i, a n d w 2 , 1 e t  

R R ~ e s(wi , i, w~) = w2 wi cwl a,~w2 

1~ t t  R e and t( wl , i, 'w2) = w~ul a,~w2cw2 v~ wl . Then  

z = t(wol,  g(O), Wo2)t(w~l, g(1) ,  wl2) " ' "  t(Wml, g(m) ,  w,,~2)2 

is in Li (G) .  However ,  
R 

z = ad~(o)CS(WnU~m, g(1) ,  wl2) "'" s(w,~zU~(m), g (m) ,  w, ,e)xcx .  

Therefore z is in L ( k ,  V ) ,  i.e., z is in Ll ~ L~. Then  x = h(z)  is in h(Li  ~ L2), i.e., 

E _c h (L i  ~ L~). 
Suppose tha t  z is in h(L i  ~ L2). Thus  x = h(z )  for some z in Li ~ L~. Then  

z = t(woi,  g(O), Wo~) " "  t(w,~i, g(m),  w ~ ) 2  

for some w0i, w02, "- • , Wmi, W~2, g(0) ,  "" " , g(m) .  Similarly 

, • \ RC~ z zd](o)cs(Yli f ( 1 ) ,  Yi~) " s ( y ~ l , f ( n ) ,  y~2)x x 

for some y u ,  yi2, • • • , y ,a ,  y ~ ,  f (0) ,  •. • , f (n ) .  T h e n  m = n (since there are exact ly  
2 m + ~  and 2 n + 2  occurrences of e in z). By  observing the occurrences of d~ in z, 
we see theft f ( i )  = g( i )  f o r 0  < i < m. We also see that  

W01 = W02 = 6, ~g(0)  = 0", WilUg(1) = y l x  ~ w i2  = y i 2 ,  

w( . / -1 ) l  Vg( i -1 )W( i -1 )2  ~ y~iyi~ = WilUg(i)  w i 2  

for 0 < i < m, and w,av~(~)wm~ = x. Thus  

0" ~ 'W01Yg(0)W02 ~ Wll~g(1)W12 ~ " " " ~ WmlVg(m) win2 ~ X~ 

i.e., x is in E.  Then  h(L~ n L~) ~ E and the proof  is complete. 
Remark.  We ment ion  wi thout  proof  tha t  using a s tandard  coding technique, 

Theorem 3.1 can be extended to the following: Given 2~, let 20 = 2 U {a, b}, a and  
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b being two new symbols. There exists a homomorphism h of E0* onto Z* with the 
following property. For each recursively enumerable set E c E*, there exist de- 
terministic context-free languages L1 ~ E0* and L2 ~ E0* such that  E = h(L1 f7 L2). 

Using the representation theorem, several nonclosm'e results are now obtained. 
In Section 4, other nonclosure results are obtained from the representation theorem. 

THEO~EM 3.2. (a) The family of languages does not contain the intersection of 
some pairs of deterministic context-free languages and does not contain the complement 
of some context-free languages. 

( b ) The family of languages is not closed under intersection or complementation. 
PROOF. It  obviously suffices to only prove (a). To this end, let E be a recursively 

enumerable, nonrecursive set. Such a set does exist [3]. In particular, E is not a 
language. By Theorem 3.1, there exist deterininistic context-free languages L~ 
and L2 and a homomorphism h such that  h(Li [3 L2) = E. Suppose the family of 
languages contains the intersection of each pair of deterministic context-free lan- 
guages. By the corollary to Theorem 2.6, h(L~ Q L2) = E is a language, a contradie- 
tion. Suppose the family of languages contains the complement of each context-free 
language. Since the family of languages contains the ration of context-free languages, 
it thus contains the intersection of context-free languages, a contradiction. 

In Theorem 4.1, we prove that  the complement of a D-language is a D-language. 
By (a) of Theorem 3.2, languages are not closed under complementation. Thus 
we have: 

COROLLARY. There exists a context-free language, thus a language, which is not a 
D-language. 

4. Closure Properties of D-Languages 

We now treat some basic closure properties of D-hmguages. In particular, we show 
that  D-languages are preserved under (i) complementation, (ii) removal of a 
fixed initial subword, and (iii) removal of a fixed final subword. 

We first turn to the proof of closure under complementation. The argument 
involves a number of intermediate steps and auxiliary concepts. The principal dif- 
ficulty is that  a deterministic one-way sa may fail to leave the input because it gets 
into a loop or attempts to write in the middle of the stack. 

We first define a new relation ~-'~ on ID's. Intuitively, [s is an atomic nmve 
which leaves the contents of the stack unchanged (although the stack pointer may 
m o v e ) .  

Notation. Let A = (K,  ~, ¢, 8, r ,  ~, qo, Zo, F) be a one-way sa. Write 
! ! I 

(q, ax, Y~lY2) ~s (q , x', y~ lY2 ) 
! ! ! ! ! 

if (q, am, y,Iy2) J- (q', x ,  y, ly~ ) and y~y~ = y~ y~. Write 

(q, ax, Y~IY=) ~-** (q', F,  Y*'IY~') 

if there exist ID's z0, . . ' ,  z~, r > 0, such that  zo = (q, ax, Y~lY~), 
z~ = (q', x', y, {y= ), and zl zi+l for 0 < i < r. 

The first two lemmas involve regular sets and one-way sa. 
LEMMA 4.1. Let A = ( K, ~, ¢, $, F, ~, qo , Zo , F) be a one-way sa. For each p, q 

in K, and a in 2~ O {¢, $}, the set 

R,q, = {x in r*l (p, a, x]) ~_.s (q, a, xl)} 

is regular. 
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PRooF. Wi thou t  loss of general i ty,  it. may  be assumed tha t  K N I' = 95. Let  
(p, q, a) in K X K X (E U {¢, S} ) be given. Let t ) be the followil~g set. o~" "rules ."  

/ g ! ~ / 
F o r e a e h ( s , s , Z ,  ) i n K X K X P X I , i f ( O , s , e , Z ) i s i ~ l a ( s , a , Z )  

(i) and e = 0, let Q,Z~'Q2 ~ Q,Zs'Q2 be i,, P; 
• r i 

(if) and e - 1, let Q t Z s Z  Q, --~ QiZZ'sQ2 be il, I ' ;  
r /r~ (iii) and e = - 1 ,  let Q1ZsQ2-~ Q~s ZQe be in P.  

For w, w;  y, y '  in ( K  U I•) * and QIuQ~ -> Q~ 'Q2  it, I ), writ.e wyw'  ~ ~l'v'u..' t~o1" 

, .  . ,e , . . . .  , ~' > 0, ]rich t t la t  wand w m(K U P ) * , w r l t e  w~ w l t t h e r e e x l s t  w0, ". , w,. 
2 

.we = = an ! l  ,,., < + ,  o < , .  a, :':1) I- a, 
if and only if xp ~ xq. By L e m m a  3.1 of [5], " {x in r '  [ .cp =5 xq} is regular. Therefore  
Rw~ is regular. 

The  next  le lnma associates with each one-way sa an  eq t l iva len t  one -way  sa 
tha t  checks the contents  of the s tack for containmeli t  ia t~ 5lille number  of regular 
sets. 

LESI~IA 4.2. Let A = ( K ,  Z, ¢, $, F, ~, qo , Zo , F )  be a o~e-way sa a~d fl)~' each i, 
1 < i < n; let R~ C P* be a regular set. Then there exist a one-way sa A '  = ( K ,  "2, ¢, 

r f r .  f 

S, F ,  it, qo , Zo , F ) ,  a "mapping ~l,~ of P' into {0, 1} j'or eack 1 < i < n, and a ( lengt/> 
preserving) tw 'mo,wrphism # of ( F ' ) *  into F* satisfying &e following condilhms: 

(1) T ( A )  = T ( A ' ) .  
(2) Suppose  (p, X l X 2 ,  VllY2 ) ~ *  a' (q, x2, YilY2). Then 
( a )  (p ,  x lx2 ,  t*(vl) lu(v2))  ~ (q, x2,  ~(Y*)I~(Y~)),  a,.t 
( b ) iJ' p = qo , vl = Zo, v2 = e, and yly: = Z1 . . .  Z .... each Z ~ i,t I ; 

Z 'g a*~d ( f  ~(Z~ . . .  then j 'oreach 1 < r < m, 1 _< i_< n, ~ (  ~) = 1 only Z,.) 
is in R~.  

(3)  S u p p o s e  (q,  x lx~,  YllY~) ~* ' ' ' A (q', X2, ZlJZ~). Then there exist Yl , Y~, zl , z~' 
in (P ' )* such that 

! 

(a)  In(Y/) = Yi ,  # ( z~)  = z i f o r i  = 1,2,  and 
! ! ' ' * ) .  ( b ) ( q, x,x  , y l  l >  ) ( q', 

(4) IJ' A is deterministic,  then so is A '. 
PBOOF. For  1 _< i _< n, let A~ = (K~,  [', &,  q~, l ~'.~,, b e a n  fsa. such tha t  

T(A,.) = R i .  Wi thou t  loss of general i ty,  we may  assume tha t  K~ f"l Ki = ~ for i -~ j 
and t h a t  K~ ~ K = ¢ for each i. Let  I"  = F X Kt X . . .  X K,, and 
Zo' = (Zo , ql , ' ' '  , qn). Let  ~ be the  ( length-preserving) homomorphis ln  of ( [ " ) *  
into F* defined by ~ ( (Z ,  t , ,  . . . ,  t,,)) = Z for each (Z, t t ,  . . . ,  t,,) in [". 
For each 1 < i _< n, let ¢~ be the mapping  of P '  into {0, 1} defined by 
~ i ( (Z ,  t l ,  . . .  , & ) )  = 1 i f & ( t i , Z )  is in F and 0 otherwise. 

Le t  8' be defined as follows: For  each tl in K i ,  1 < i < n, and each (d, q', e, y) 
in ~(q, a, Z ) :  

! ! 
( 5 )  if y = e, let  (d,  q ,  e, e) be in ~ (q, a, (Z ,  t l ,  . . -  , &));  
( 6 )  i f y  = Z~ . . .  Z~,  j >_ 1, e a c h Z ~ i n F ,  let 

( d, q', e, ( Z ,  , t, , . . .  , t , , )(  Z~ , 8~( t, , Z~),  . . .  , ~,( tn , Z , )  ) 

• . .  ( Z ~ ,  ~ ( t ~ ,  Z~ . . .  Z~_~), . . .  , ~ ( t ~ ,  Z~ . . .  Z~_~)))  

be in if(q, a, (Z,  t~, . . .  , &)) .  
Clearly A '  is determinist ic  if A is. Condit ion (3) holds by construction. Consider  

*2 
~ The definition of ~ in [5] assmned that r > 0, while we now assume that r > 0. It  is easily 
seen that the proof of Lemma 3.1 of [5] is still valid under the condition that r > 0. 
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condition (2). A straightforward induction on t.he lmmber of moves of A' shows 
• ! 

that (2a) holds, and i f p = q 0 ,  v l = Z o ,  v~=e,  a n d y l y 2 = Z 1 - . . Z , , , w h e r e Z j =  
( g j , t j ~ ,  - . .  , tin) for j = 1, ' "  , m; then hi = q~for t < i < n a n d t k ,  ~ ~: 
(q.i, Z~ • • • Zig-l) for 1 < Ic < m and 1 _< i _< n. Now from ~he definitions of ~ and 
>, (2) holds. Condition (1) follows from (2) and (3). 

We need three additional concepts in order to prove closure of D-languages under 
complementation. The first is now presented. 

Definition. A one-way sa A = (K, 2, ¢, $, F, q0, Zo, F) is said to be conlinuing if 
for each'wlw2 in ¢2 S, w~ ¢ e, with (q0, wlw2, Zol) ~* (q, w2, ~); there exist 

I ! ! I 

q, w2, "y such that (q, %,~, ~) ~ (q', w2, ~/). 
Thus a continuing one-way sa is a one-way sa in which each sequence of ID's 

from q0 and Zo with a nonzero input in the last ID can be extended. 
The next lemma shows that when dealing with deterministic one-way sa, there is 

no loss of generality in assuming that  t.he device is continuing. 
LEMMA 4.3. For each deterministic one-way sa A, there exists a continuing one-way 

sa B such that T(A) = T(B). 
I:':~OOF. Let A = (K, 2~, ¢, 8, F, ~, qo, Zo, F) be a one-way deterministic sa. 

Without loss of generality, it may be assumed that  for each (q, a) in K X 
(2; U {¢, $}), ~(q, a, Zo) = (d, q', e, Zoy),  with e _> 0. (For otherwise we could 
consider the deterministic one-way sa ( K  U {po}, 2, ¢, S, p U { Uo}, 51, p0, Uo, F), 
where po and U0 are new symbols, and ~1 is defined as follows for each (q, a, Z) in 
g × (~ U {¢, S}) × r:  ~(po, a, Uo) = (O, qo,O, UoZo), ~ ( p o , a , Z ) =  
(0, qo,0, Z), 6~(q,a, U0) = (0, q, 0, Uo), and 6t(q, a, Z) = 6 ( q , a , Z ) . )  For each 
q in K and Z in F, let q and 2 be new symbols. Let Vo and h also be new symbols. 
L e t B  = (KB,2~,¢,8, r , , 6 B , q o ,  Vo,FB) ,where  [( = { ( ] l q i n K } ,  KB = KU 
t~ ~U{h}, P ~ =  F U { 2 1 Z i n F }  U{Vo},FB = F U { ~ l q i n F } , a n d a ~ i s d e f i n e d a s  
follows (for each (q, a, Z) in K X (N U {¢, $}) X P): 

(i) 6B(h, a, Y) = (1, h, 0, Y) for each Y in FB. 
(ii) (a) 6B(qo, ¢, Vo) = (0, qo, O, YoZe). 

(b) ~(p ,  b, Vo) = (1, h, 0, Vo) for each (p, b) ~ (qo, ¢) in (K  U [/~) X 
(~ u {¢, s}). 

I Let ,~(q, a, Z) = (d, q, e, y). 
(iii) (a) If y = Z, let ~z(q, a, Z) = ~(q, a, Z) .  

(b) I f y  ~ Z, let ~B(q, a, Z)  = (1, h , O , Z ) .  
(iv) (a) I f y  = Z a n d e _ <  0,1et~B(q,a,  2 )  = (d,q! ,e ,  2 ) .  

(b) If y = Z and e = 1, let ~B(q, a, 2 )  = (1, h, 0, 2) .  
(c) I f y C Z a n d y  = vY, Y i n r ,  let, ~B(q, a, 2)  = (d ,q ' , e ,  vY) .  
(d) If y = e, let 3~(q, a, 2)  = (d, q,-' e, e). 

(v)  ~( ~, a, z )  = ~,(~, a, 2 )  = (0, q, 0, 2 ) .  
The intuitive idea for B is as follows. In  a computation, B is to simulate A if A 

does not "block." If A "blocks," then B goes to the dead state h. To do this, a new 
leftmost stack symbol Vo is introduced, and the rightmost symbol on the stack is 

! 
marked. Since ~(q, a, Z0) = (d, q,  e, Zoy), with e > 0, the "blocking" of A occurs if 
and only if the stack pointer of B is either (a )  in the interior of the stack and the 
instruction in A is to write (this occurs at  (iii-b)), or (~) at the rightmost symbol 
on the stack and the instruction in A is to move the stack pointer right (this occurs 
at (iv-b)). The simulation of A by B is in (iii), (iv), and iv).  In particular, (iv-d) 
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fred (v) togedmr perform art erase and a marking of the new rightmos~ symbol on 
the stack. 

Formally, suppose ¢~c'S is in CZ*S, Ei ther  
1) there exists an infinite sequence of ID's  

(qo, uo, re) ~A " ~ (q~, U~, > )  ~-,, . . . ,  

with uo = ~c'S and vo = Zol;  or 
(2) d~ere exists a finite sequence of' ID 's  

withy.0 = CwS, v0 = Zol, anduk  = e ;o r  
(3) there exists a finite sequence of ID 's  

(qo, uo, "to) ~A "'" kA ('~,,, U~, W), 

with uo = eroS, "yo = ZoO, uk ~ e, and for no q, u, "y does (q~, uk,  ~/i~) ~.~ (q, u, 7) .  
For each i, if 7i = a,la/Y,: for solne Yi in F, let r,  = Voa,la,'£, ; arid if 7g = c~iYd 

for some Yi in P, let r i  = VoaJ?d. If (1) holds, then 
(4) (qo, uo, Vol) ~,, (qo, uo, ~o) ~-~ . . .  k~ ( ~ ,  ~ ,  T,,) F'tl ' • 

If (2) holds, then 
(5) (qo,uo,Vol) ~B(qo,~O,T0) k~" ~,*(q~,U,,,T,,).  

Suppose that  (3) holds. Then  
(6) (qo,~0,Vol) k , (qo ,uo ,~o)  ~ . .  ~ ,* (q~ ,u~ ,~ ) .  

Sinceuk ~- s, uk = aeuk' for some ak in 2; U {¢, 8}. Now either y/¢ = ~,'W~la,,Y,o, 
I.~"k in r ,  and 8(q~, ak, We) = (da., qk+~ , ek , yk), with Wk # Yk; or'r~ = c~j~Yk] and 
8( qk ,at, Y/~) = ( d~ , q~ +~ , 1, y~ ). In the former case, 8s(qe, aa,, We) = (1, h, O, W~). 
In the latter,  8~(qe, ak, l~e) = (1, h, 0, Yk). Thus 

(q~, u , ,  r~) ~-B (h, u~', r~) k~* (h, e, re). 

Hence T ( B )  = T ( A )  and B is continuing. 
We now introduce the second auxiliary concept used in proving the closure of 

D-languages under  complementat ion.  
Definition. A one-way sa A = (K,  E, ¢, $, F, ~, qo, Z0, F)  is said to be directed 

if it is deterministic and the following holds for each w~a.w~ in ¢2"$, a in ~ U {¢, $} : 
If (q0, wlaw~, Zol) ~* (p, aw~, xlx') and (p, a, xl) ~_,s (q, a, xl),  then (i) p ~ q 
and (ii) (p, a, xl) }~ (q, a, xl). 

Intuit ively,  A is directed if there is no computa t ion  from q0 and Z0 containing 
an ID (p,  aw~, xlx' ) with  the following proper ty :  There  is a sequence of at  least 
two consecutive moves s tar t ing from (p, aw~, xl) which (i) preserves the stack at  
each move, (ii) does not  advance the input,  and (iii) returns to the right end of the 
stack. Less formally, A is directed if whenever  the device goes left on the stack, it 
cannot go right wi thout  advancing the input tape. The  next  result shows tha t  every  
deterministic one-way sa is equivalent  to a directed sa. 

Lm,~MA 4.4. For each deterministic one-way sa A = ( K, 23, ¢, $, F, ~, qo , Z0, F ) ,  
there exists a directed sa B such that T(  A ) = T(  B) .  Furthermore, B is continuing i f  
A is continuing. 
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PROOF. For eachp,  q i n K ,  a n d a i n E U  {¢,$},let  

Rpq,(A) = {T in r* i (p, a, 7]) ~_~S(q,a, 71)}. 

By Lemma 4.1, each set fRw,(A)  is regular. By Lemma 4.2, there is a deterministic 
one-way sa A'  = (K, E, ¢, 8, P', ~', qo, Zo', F),  a mapping ~pq~ of r '  into {0, 1} for 
each (p, q, a) in K X K X (:t U {¢, $}), and a homomorphism g of (P')* into F *  

satisfying the conditions of the lemma. By (2) and (3) of Lemma 4.2, 

, (R ,q~(A ' ) )  = R,q~(A) 

for each (p, q, a) i n K  X K X (E U {¢, 8}). 
Let B = (K U {h}, ~, ¢, 8, P', ~, qo, Zo', F) be the deterministic one-way sa in 

which h is a new symbol and ~ is defined as follows (for each (q, a, Z) in 
K x (:s U 1¢, S}) x r'): 

(i) ~(h, a, Z )  = (1, h, O, Z) .  (Thus h is a "dead"  state.) 
(ii) If ~'(q, a, Z) = ( d , q ' , e , y )  and (a) e = 1, or (¢t) d = 1, or (7) y ¢ Z; 

then let ~(q, a, Z)  = (d, q', e, y).26 
(iii) Suppose ~'(q, a, Z)  = (0, q', e, Z)  and e < 0. 
(a) I f~,p,(Z)  = ~p,~(Z) = 1 for some p in K, thenle t  ~(q, a, Z) = (1, h, 0, Z). 27 
(b) If  there exists p in K such that  g,~p,(Z) = 1 and ¢pp.,(Z) = 0 for each p' 

in K, then let ~(q, a, Z)  = (0, p, O, Z). 2s 
(c) If  neither (a) nor (b) holds, so that  ¢qp,(Z) = 0 for all p in K, then let 

~(q, a, Z)  = (0, q', e, Z). 29 
We first show that  T ( A )  = T(B).  Let w be an arbitrary word in ¢~ '8  and 

(q0, u0, (q,, Ul, . . . .  (q,, . . . .  

a (possibly infinite) sequence of ID's of A', with uo = w and ~0 = Z0'l. To show that  
T ( A ' )  = T(B),  it suffices to prove that  for each i > 0: 

(1) Either (c~) w is in both T ( A ' )  and in T(B) ,  or (/~) w is neither in T ( A ' )  
$ 

nor T ( B ) ,  or (I') there existsj  > / s u c h  that (q0, u0, "~0) ~-, (qi, u~, 7~). 
Suppose T(A)  ~ T ( B ) .  Let i be the smallest integer for which (1) is false for 

some w. (Since (17) is true for i = 0, 

( qo , wlaw2 , Zo'l) 

and 

where q = qi-1, 
Z in F'. 

i > 1.) Then 

(q0, wlaw.2, Zo'l) ~ (q, aw2, xZIx ), 

w = wlaw2, a i n  E I J {¢, $}, aw2 = ui-1,  and ~'~-i = xZlx' ,  

Suppose~ ' (q ,a ,Z)  = ( d , q ' , e , y ) , w i t h e - -  1, d =  1, o r y ~ Z .  By (ii), ~(q, a, Z) 
= (d, q', e, y). Then (q, aw2, xZlx')  ~-, (q~, u~, 7i). This contradicts the choice of i. 

Suppose ~'(q, a, Z) (0, q', e, Z),  with e < 0. Three cases arise. 

26 A n y  i n s t r u c t i o n  in w h i c h  A '  m o v e s  r i g h t  on  the  i n p u t  or on  the  s t a c k ,  or a l t e r s  the  s t a c k  can-  
n o t  p r e v e n t  A '  f r om be ing  d i rec ted .  H e n c e  i t  r e m a i n s  u n c h a n g e d  in B.  
27 In  th i s  case  A '  h a s  s o m e  xZ on t h e  s t a c k  and  (q, a, xZ1) ~_~s, (p, a, xZl) and  (p, a, xZ1) [.~s, 
(p, a, xZ1). T h e r e f o r e  A '  is in a n o n t r i v i a l  loop.  I n  B we b r eak  t h e  loop a n d  go to t he  dead  
s t a t e .  
28 In  A' ,  we have  (q, a, xZ1) ~s, (p, a, xZ1) while  (p, a, xZ1) ~_~s (p,, a, xZI) is fa lse  for  e ach  p ' .  
In  B, we s e n d  the  device  d i r e c t y  f r o m  s t a t e  q to s t a t e  p. 
,9 Since (q, a, xZ1) ~ (p, a, xZ1) is fa lse  for each  p in K ,  we al low B to m i m i c  A '  
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( .)  Suppose (q, o, xZl) ~I ~ zzl) ~-I ~ , (p, a, ,, (p,  a, xZ!) for some p. Then 
(q, a~c~ , xZlx ) ~ A' (p, aw~ , ..,, (p, awe, xZlx ' )  and w = w~a'w~ is note in 
T(A'). By (iii-a), ;(q, a, Z) = (1, k, 0, Z). Thus ((1, a, xZlx' ) ~-e (h, e, xZ]x').  

* (k, e, xZlx ' ) ,  so that ,c' is not in T ( B ) ,  a eonta'adiction. Then (q0, ~c, Z0'I) ~ B 
(b) Suppose ( q, a, xZ1) ~ ~ (p, a, xZ1) and, for all p' in K,  (p, a, xZ]) ~- ~ 

(p', a, xZ1) is false. By (iii-b), ~(q, a, Z) = (0, p, 0, Z). Then 
$S ~ f 

(q0, ~,,, Z0'l) b$' (q, aw~, xZlx' ) ~a" (p, aw':, xZl* ) 

= ( q ~ , u ~ , ~ )  for some j_> i 

a nd 

(q0, ~', Z0'l) ~- ~ ( q, a'.'~ , xZlx')  ~-. (p, awe, ~ Z l # ) =  (q~, u~, y~). 

This contradicts the choice of i. 
(c) Suppose (q, a, xZ1) ~.sa, (p, a, xZ1) is false for each p in K. By (iii-e), 

3(q, a, Z) = 6'(q, a, Z). Then ( q, aw,~ , xZlx'  ) ~- A, ( q i , u~ , y , ) and ( q, aw~ , xZlx'  ) ~ B 
(q,, u~, 'y~). This again yields a contradiction of i. Thus (1) is true for each i, 
so that T(A' )  = '/ '(B). 

Now suppose that B is nol~ directed. Then there exist a smallest integer/~ > 0 
and an integer r satisfying the following 

(2) r -  k > 1. 
(3) There exist Uo = w~aw~ in ~f2;'8, 

D, n d 

(q0, u0, "r0) k~ " 

uk = aw~, a in ~ U {¢, 8}, such that 

F~ (q~, u~, u~) 

(q~, a, ~k) ~I . .  ~'; (q~, a, ,~) ,  

with'y0 = Zo'l, yk = xZlx' ,  Z i n F ' , a n d v ~  = vr = xZ1. 
Suppose that ~(qk , a, Z) = (d, qk+l ,e ,y)  and e i there  = 1, d = 1, o r y  ~ Z. 

Then (qk, a, vk) ~I (qk+l, a, vk+l) is false. Therefore ~(qk, a, Z) is of type (iii). 
Suppose one of the qi is h. Then q~ = h and (q~_l, a, v~_~) ~ B (qr, e, Vr), a contradic- 

tion. Thus no qi is h. Thus a(qk, a, Z) is of type (ill-b) or (iii-c). 
At this point we note the following easily proved fact: 

$S 
(4) Let w be in ¢2~'8. If (qo, w, Zo'l) ~,* (q, aw2, Y~lY~), a in ~, (% a, Y~I) [-B 

(q', a, y), and q' ~ h; then (qo, w, go'l) ~ '  (q, aw2, YlIY~) and (q, a, Y~I) ~]~ 
(q', a, u). 

Now suppose that a( qk, a, Z) is of type (ill-b). Then ( qk , a, xZt ) ~ "~ ( qk+1, a, xZ  1 ) 
and (qk+l , a, xZ1) ~ . s  ( qr, a, xZ) .  By (4), (q0, wlaw~, Zo'l) ~ ~, ( qk, aw~, xZlx  ), 
(qk, a, xgl )  ~ ~ (qk+~ , a, xZl) ,  and (qk+~ , a, xZ1) [- ~ (q~, a, xZ]). This contradicts 
a(qk, a, Z) being of type (iii-b). 

Finally, suppose that  a(qk, a, Zk) is of type (iii-e). Since (qk, a, azZ1) [-B *s 
(q~, a, xZ1) , it follows from (4) that  (q0, w~aw2, Zo']) ~-], (qk, aw~, xZlx ' )  and 
(qk, a, xZ1) ~-]'7 (q~, a, xZ1). This contradicts 3(qk, a, Z) being of type (iii-c). 

Thus the integer k cannot exist and B is directed. 
If A is continuing, then A', as constructed in Lemma 4.2, is continuing. I t  is then 

easily seen that  B is continuing. 
We now present the third of the auxiliary concepts needed to prove the closure of 

D-languages under complementation. 
Definition. A one-way sa A = (K, ~, ¢, 8, F, 6, qo, Zo, F)  is called loop-free if it 
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is deterministic and, for each w in ~E*S, there exists y1, y~ in I'* and q in K such that  

Thus A is loop-free if it reads each word in ¢2,*S, th::tt is, if it is corRinuittg and 
does not  operate forever  on a given input  tape. 

LEa,I.UA 4.5. Fo'~' eve~'y one-way sa A, the~'e exists, a loop-free one-zc'ay sa B such 
tha t  T ( A )  = T ( B ) .  

PaooF.  Let A = (K ,  Z, ¢, S, F, ~, q0, Z0, F) .  By  Lemmas  4.3 and 4.4, it may be 
assumed that  A is directed and contitming. Let  B = ( K  U {h}, 2, ¢, 8, P, 6 , ,  q0, 
Z0, F) ,  where h is a new symbol and 8B is defined as follows (for each (q, a, Z) in 
K X (~ U {¢~ S}) X r ) :  

(i) ~,(a, a, z )  = (1, a, o, z ) .  
(ii) I f S ( q , a , Z )  = ( d , q ' , e , y )  and (a)  d = 1, or (b)  y = Z, or (c)  y = e; 

let, ~,(q, a, Z) = ~(q, a, Z).  
(iii) S u p p o s e ~ ( q , a , Z )  = (O, q', O, y), y ~ Z, and y ¢ E. 
(a)  If (q, a, Z1) ~-* (q', a, l) for some q', let ~B(q, a, Z)  = 5(q, a, Z) .  
(b)  If (q, a, Z1) ~ * (q~, e, y~lY2) for some q', y~, and y~ ; le t  ~B(q, a, Z)  = ~( q, a, Z). 
(c) I f ( q , a ,  Z1) ~* (q',a,y~ly~) for  s o m e q ' , y l , a n d y 2  ¢ e; let S,(q, a, Z) = 

/t(q, a, Z). 
(d) In all other  cases, let ~.(q, a, Z) = (1, h, O, Z). 
Let ¢w$ be in ¢2~*$. Since A is continuing, either:  
(1) there exists a finite sequence of ID 's  

(qo, u0, ~0) F~ "" Fa (q~, u,~, ~ ) ,  

w i t h u 0 =  ¢w$, V0= Z01, andu~ = e ; o r  
(2) there exists an infinRe sequence of ID 's  

(q0, u0, ~0) ~a .. : t-~ (q~, u~, ~ )  ~ . . . ,  

with u0 = ¢w$ and Vo = Z01. 
For  each i, i # k in ( ! ) ,  let w = aY~Io~,J and ui = aiui', with Yi in r and a~ 

in z U {¢, S}. 
Suppose (1) holds. Consider i, i # k. If  ~(q;, a~, Yi) satisfies (ii),  then 

~ ( q ; ,  a i ,  Vx) = ~(q,:, a i ,  Fi).  Suppose ~(q~, a~, Yi) satisfies (iii). Since u~0 =e, 
there exists a smMlest i n t ege r f ( i )  such tha t  uzu) = ui'. Consider a i ,  i < j < f ( i) .  
If  there exists s o m e j  such that  oe~Yj = o~, then either (q~, a~, Y~I) ~ (q', a~, l) 
f o r  sOIlfle qt , t , or (ql a~, Y~I) ~ ~ (q ,  a~ lY) for some q' and y # e. Suppose there is no 
j such that  o~Y~ = ~ .  Then (q~, a~, Y~I) ~a (q~u), ~, YqY~) for some y~ and y~. 
In  any case, ~(q.~, a~, Y~) = ~(q~, a~, Yd.  Thus 

(q0, ~0, v0) t-~ " ' "  I-. (q~, u, ,  v~) .  

To prove tha t  B satisfies the conclusion of the lemma, it thus suffices to show 
tha t  if (2) hokls, then (qo, u0, vo) ~ * ( h ,  e, v) for some V. Since either ~B(q, a, Y) = 
~(q, a, Y) or ~,(q, a, Y) = (1, h, 0, Y), it suffices to show tha t  for some t, 
(qt, ut,  vt) }-, (qt+l, ut+~, vt+~) is false. Assume (2) holds and there is no i such 
tha t  ,~(q~, a~, Iz~) satisfies (ill-d). Since Uo, u~, .. • is an infinite sequence, there 
exists a smallest integer s such tha t  u~ = u~ for all i > s. Hence there is no i > s such 
tha t  ~(q~, a , ,  Y~) satisfies (ill-b). 
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Suppose there is some i > s such that  a(ql, as, Y;) satisfies (iii-c). Then there 
exists r > s such that  a(q,., as, Yr) = (0, q,+x, - 1 ,  Y,r). Thus 

Assume there exists an integer, thus a smallest integer, 1 > r such that  3'~ = 7 t .  
Then  (q~ , u.~ , a,.Y~q) ~ ~s (q, , u., , c~Y,q). Since A is directed, (q~, u~, a~Y~l) ~-'~ 
(q,, u.,, ~Y,.1), cont rad ic t ing (3 ) .  Thus there is no integer i > r such that  7i  = 7r.  
tlence a,Y~ is an initial subword, of a,, for each i > r. Since there are only a finite 
number of initial subwords of ~ ,  there exists a largest initial subword a of o~ with 
the following property: 

(4) There exists an infinite sequence i (1) ,  . . .  , i ( j ) ,  . . .  , r < i(1) < i(2) 
< . . .  such that  a = a~u)Y~(5), for each j .  
Then for some m and n, m < n, qi(,,) = q i ( n )  . l~{ence (qi(,o , u,~ , ai(,,o Y~(,,,)I) ~ ~ 
(q~(~), u~, a~(,,)Yi(m)l). From the fact that a is the largest initial subword of a~ satis- 
fying (4),  

This contradicts A being directed since q~(,,l = q~(,> • Hence there is no i > s such 
that 6(q~, a:, Y~]) satisfies (ill-e). 

In view of the above, ~i(ql, no, Y~) satisfies (ii-b), or (ii-c), or (ill-a) for each 
i >_ s. Now 6(qi, as, Yi) cannot satisfy (ii-b) for every i > s. For otherwise, A is 
merely scanning the stack % and a contradiction arises by the argument in the pre- 
ceding paragraph. Let s(1) be the smallest integer greater than or equal_ to s such 
that ~(q~(1), a , ,  Ys(1)) satisfies (ii-c) or (ill-a). Either alternative results in some 
~(2), s(2) > s(1), for which I ~(2)1 < I Repeating the procedure, we get 
s(4), s(6),  . . .  , such that  s(4) < s(6) < . . .  and I ~',(4)1 > ] ~(6)1 > " "  • This is 
a contradiction since 1% ] is finite. We are thus forced to conclude that there exists 
some i such that  ~(q~, a~, Y0 satisfies (ill-d), thereby proving the l_emma. 

Remark. Given (q, a, Z),  we can construct, although not done here, one-way sa 
C1, C2, and Ca (depending on (q, a, Z))  such that (1) a is in T(C1) if and only if 
~(q, a, Z) satisfies (ill-a) ; (2) a is in T(CQ if and only if ~(q, a, Z) satisfies (ill-b) ; 
and (3) a is in T(C~) if and only if ~(q, a, Z)  satisfies (ill-c). Since languages are 
recursive sets [5], the construction of B in Lemma 4.5 is effective. 

We are finally ready for the complementation result. 
THnORE~ 4.1. The complement of a D-language is a D-language. 
PRoof. Let  L c 2~* be a D-language. By Lemma 4.5, L = T(A)  for some loop- 

free one-way sa A = (K, ~, ¢, $, I', $, q0, Z0, El.  Let B = (K, Z, ¢, ~, F, ~, q0, Z0, 
K - F) .  Since A is loop-free and the device is deterministic, obviously 
T(B)  = ~* -- T ( A ) .  

COROL~AI~Y. For each D-language L and regular set R, R U L and R - L are 
D-languages. 

PROOF. Since L U R = 2~* - [(2~* - L ) ~  (~* - R)] and R - L = R 
(2* -- L), the result follows from Cgrollary 2 to Theorem 2.1 and from Theorem 4.1. 

Another important operation which preserves D-languages is the inverse gsm 
mapping. 

T~EOR~ 4.2. Let L be a D-language and S = (Ks ,  2 U {h}, a, ~s, X, pal a gsm 
w i t h h n o t i n Z .  Then L' = {w in 2~*[S(wh) in L} isaD-language. 
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P*~ooF. L e t L  = T(A) ,whereA = (K, ~x, ¢, S, F, 8, q o , Z o , f ' ) . L e t  

n = max{IX(p,a)l  I (P , a )  in t(.~ X (2;U{h})} 

and let; A,, = U'}=0A ~. Let 0 be a symbol not  in K.s a~ld r a symbol not in 
K O (K X (K.s O {0}) X k~,). Le tB  = (KB, Z O {h}, ¢, S, P, a~, qo, Zo, FB), where 
K ~ =  KU{r}  U ( K X  (KsU{0})  X£~) ,  I,'a = t , 'X {0} X{e},and#~isdefined 
as follows for (Z, p, q, b, x) i~ r X K~ X K × a X ~ - ~  : 

(i) If ~(q, ¢, Z) = (d, q', e, y), then 
(a) a~(q, ¢, Z) = (d, q', e, y) if d = O. 
(b)  ~,,(q, ¢, Z )  = (d, (q', ~,o, ~), e, y )  if d = ~. 

(ii) For a in Y,, let 
(a) ~((q, p, ~), a, Z )  = (1, (q, ~,4p, a), X(p, a)), 0, Z). 

(iii) if  a is in Z U {$} and 6(q, b, Z) = (d,  q', e, y), then 
(a) 6,,((q, p, bx), a, Z) = (0, (q', p, bx), e, y) if d = 0. 
(b) 6,,((q, p, bx), a, Z) = (0, (q', p, x) ,  e, y) if d = 1. 

(iv) /i~((q, p, e), 8, Z) = (0, (q, 0, X(p, /,.)), 0, Z). 
(v) li'or 6(q, b ,Z )  = (d, q', e, y), 

(a) ~((q ,  0, bx), S, Z) = (0, (q', O, bx), e, y) if d = O. 
(b) ~B((q, 0, bx), 8, Z) = (0, ((1', O, x),  e, y) if d = 1. 

(vi) For ~(q, 8, Z )  = (d, q', e, y) ,  
6n((q, 0, e), $, Z) = (d, (q', O, e:), e, y). 

(vii) For all o t h e r s i n K ~ j , a i n 2 ~ 0 { h , ¢ ,  S} , and Z in P, 
~,,(s,a,Z) = (1, r, 0, Z). 

Clearly B is deterministic. Intuitively, B imitates A on ¢ by (i), simulates A on 
X(p, a) by (ii) and (iii), simulates A onX(p, h)  by (iv) and (v), and imitates A on 
$ by (vi). Formally, the construction does the  following. By (i), 

(qo,  ¢, Zol) ~-~ ((q, po  , ~), ~, y,!y~) 

if and only if 

(qo, ¢, Zol) k~ (q, ~, ylly~). 

By (ii), 

By (iii), 

if and only if 

((q, p, e), a, Y~lY2) tB ((q, &s'(P, a), X(p, a)) ,  e, YllY2). 

((q, p, U), a, YllY2) ~ ((q/,  P, e), a, Y(lY() 

(q, u, ylly2) ~ * ' A (q , e, Y'IY2). 

By (iv) and (v), 

( (q, p, ~), $, YilY2) ~B ((q, O, X(p, h)), S, y~ly2) 

~-,* ((q', O, ~), $, yl'ly2') 

~ ~ ( (q", 0, e), e, Yl"tY2") 
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if a~xd only if 

(q, X(p, h)$, ylly~) 

Then  f o r a y . . ,  ak,  k > 0 ,  eacha~ 

(qo, ¢al . . .  ae$, Zol) 

I '~ I t ! 

I !  /I 

in E, we have  

~-B ( (ql ,  ~O,, 
?,I ((q~, ~ ,  

~.* ((q~, ~ ,  

wl), a2 "- .  ak8, ~l) 

w~),  a~ . . .  ak$, ~2) 

'w,.), S, ~ )  
~B ((qk+l, 0, wk+l), ~, ~+1) 
t-~ ((qk+2, o, ~), ~, ~+~) 
~,* ( (q~+3, o, ,), ,, ~+~) 

if and only if a,~(pi, at+l) = pi+l and X(p~, ai+l) = wi+l for each i, 0 < i < k, 
X(pk, h) = wk+l (so tha t  S(al • .. akh) = wl ." • w~+0, and 

(qo,  ¢wl  " "  Wk+~$, go1) ~-.~ ( q , ,  w l  " ' "  wk+l$, 3'1), 

(q~, we "" • 'wk+~$, 3~i) ~-a (qi+l, wi+l . . . .  wk+lS, ~i+1) for 1 < i < Ic + 1, 

and 

(q~+~, 8, ~+~) ~ ~ (q~+3, ~, ~:+~). 

Hence 

(qo,  Ca, . . .  a~,% go1) ~-*, ( (q,  o, ~), ~, ul~) 

if ~nd only if 

, * u l , ) .  (qo ¢S(a, . . .  akh)$, go1) ~-a (q, e, 

Thus  w is in T(B)  if and only if S(wh) is in T ( A ) .  Therefore 

T(B)  = {w in Z* iS (wh)  in LI .  

COROLLARY 1. For each D-language L and each gsm S, 

S-'(L) = {w IS(w) in L} 

is a D-language. 
P~tooF. Let  S = (K,  Z, ,5, a, X, p0). Let. h be a symbol  not in K. Let  $1 be the  

gsm (K ,  E U {h}, ,5, 61, X~, p0), where 81(p, h) = p and Xl(p, h) = e for each p in K,  

and 61 = 6 ~nd kl = X otherwise. Then  

S- i (L)  = {w in E*IS (w)  in L} 

= {w in Z*iSx(wh) in L) 

is ~ D-lan~u&ge by Theo rem 4.2. 
COaOLLAnY 2. Let w be a word "in Z*. I f  L is a D-language, then {x t wx in L} is 

a D-language. 
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PROOF. Let L~ = L -- {w}. By Corollary 2 of Theorem 2.1, L~ is a D-language. 
Let S = ({p0, P,}, "2, Z, 8, X, p0) be t h e g s m  where ~(p0, b) = ~(p,,  b) = p~, 
k(p0, b) = wb, and k ( p ,  , b) = b for each b in 2;. By Corollary 1 above, ;'.;--1(Ll) is 
a, D-language. Then B,,~(L) = S-*(L,) if L does not contain w, and £',,,(L) = 
S-'(L,) U {d if L does contain w, where Ii~(L) = { x t w x  in L}. Thus t,~(L) is a 
D-language. 

COROLLARY 3. Let w be a word < ~*. I f  L is a D-language, then {x ixw in L} is 
also a D-language. 

PROOF. Let h be a symbol  not in E. Let S be the gsm ( {po}, Z U { h}, S, ~, X, po), 
where a(p0, b) = 8(po,  h) = p0, X(po, b) = b, a,~(.l X(p0, h) = w for each 5 i~, 2. 
Then {x I xw in L} = {x in E* { S(xh) in L} is a D-language by Theorem 4.2. 

A number of operat ions  which do not, I)reserve D-lallguages are now preset~t:ed. 
T~IEOREM 4.3. The family of D-languages is not closed under (i) union, 

( i i )  product, ( i i i ) . ,  and ( i v )  homomorphism. :~p 
PROOF. Let L, arid L2 be two D-languages such that L1 ["1 L2 is not a D-language. 

By Theorem 3.2, li,~ a n d  L~ exist. Let Z0 be the alphabet over which L~ and L~ are 
defined. Let  g be a new symbol.  Let L, = .~* - L, and Le := .20* - 1,~. 

As to (i) ,  suppose L1 U L,., is a D-language. Then LI f'l L2 = 20" - (Li U L2) is 
a D-language, a contradict ion.  

Consider (ii). Clearly L~ U gL2 is a D-language. Also, {g, g~} is a I)-language. 
Suppose D-hmguages ~Lre closed under product. Then 

L' = {g, g~}(L, U gL~) 

= g~(Lt U L~) U gL~ U gaL~ 

is a D-language. By the  corollary to Theorem 2.3, L' f'l gZE0* = ge(Lt U Le) is a 
D-language. By Corol lary 2 of Theorem 4.2, L, U L~ is a D-language, a contradiction*. 

Consider (iii). Suppose D-languages are closed under .. Then L'* f'l g~EoE0* = 
g:(Lt O L2) is a D-language.  By Corollary 2 of Theorem 4.2, Lt U L~ is a I)-hmguage, 

a contradiction. 
Consider (iv).  As no ted  above, L~ U gL~ is a D-language. Let h be tim homo- 

morphism defined by h(a)  = a for a in 23o and h(g) = e. Then h(L~ O gL~) = 
/.,, U L~ is a D-language, a contradiction. 

5. Decision Problems 
We now consider the decidabil i ty of w~rious questions. We use the fact lime all cot> 
struetions given so far ea~t be tnade effective. We also use the fact that a language 
is reeursive [5], i.e., ig is reeursively solvable to determine if an arbitrary word is in 

an arbitrary language. 
Turning to solvabil i ty results, we have 
TuEonml  5.1. It is recursively solvable to deter'mine whether T(A) "is erupt!trot an 

arbitrary one-way sa A .  
P~OOF. Let  A be a oim-way sa ()vet" E. Let  h be the homomorphism defined by 

h(a) = e for each a in E. By the corollary to Theorem 2.6, h ( T ( A ) )  is a language. 
Now T(A ) = ¢ if and on ly  if e is not in h( T(A )) .  Since h( T(A )) is a language, it is 

rceursive. Thus it is decidable if e is in h( T(A ) ). 

a0 (iv) implies n o n c l o s u r e  u n d e r  gsm mappings .  
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The next solvability result concerns D-languages. 
TH~OaEV 5.2. It  is recuraively sdvable to determine for an arbitrary DJanguage 

L and a regular set R whether L = R. 
Pi~OOF. Since L is a D-language and R is regular, "2* - L and (E* - L) n R 

are D-languages. Thus L ~ = [L n (E* - g) ]  [_J [(E* - L) n R] is a language. Now 
L = R if and only if L' = Ca, which is solvable by Theorem 5.1. 

Turning to unsolvability results, we have 
T~IEOaEV 5.3. It is recursively unsolvable to determine whether an arbitrary 

language is (a) regular, (b) context free, ( c) a D-lauguage. 
PaooF. (a) is known in that it is reeursively unsolvable to determine whether an 

arbitrary context-free language is regular [1]. 
Consider (b).  Let  ~ f'/E2 = Ca and let M~ .~ E~* be a language which is not con- 

text fl'ee, say {aeb~c ' { i > 1}. For each context-free language M c E**, let. L(M)  be 
the language ME2* U El*M2 • Since it is unsolvable to determine if an arbitrary 
context-free language is ~** [1], it suftiees to show that 

(1) L(M ) is context free if and only if M = El*. 
Thus suppose that  M = E**. Then L ( M )  = z**Z,* is regular, hence context free. 

Suppose M # "2** and L ( M )  is context free. Let w be some word in g** - M. Then 
L(M)  fl wE2* = wM2 is context free. Therefore M2 is eontex~ free, a contradiction. 
Thus (1) is justified. 

To prove (c),  let Ma be a language which is not a D-language. By the corollary 
to Theorem 3.2, Ma exists. For each context-free language M <_E E~*, let H(M) be 
the language ME~* U El*Ma. I t  suffices to show that  

(2) H ( M )  is a D-language if and only if M = E~*. 
Suppose M = El*. Then H ( M )  = El*Z2* is regular, thus a D-language. Suppose 

M ~ ,21" and H(M) is a D-language. Let w be i n ~ * -  M. Then H(M) N w~* = 'will :~ is 
a D-language. By Corollary 2 of Theorem 4.2, Ma is a D-language, a contradiction. 
Thus (2) is justified. 

We close with the following open problem: 
( , )  Is it reeursively solvable to determine for an arbitrary one-way sa A whether 

T(A) is finite? 
Given an arbitrary language L c 2~* and a fixed element a in 2~, let h be the homo- 

morphism defined by h(b) = a for each b in 2,. Then L is finite if and only if h(L)  is 
finite. Let M ( L )  = h f i t (h (L) ) .  By the corollary to Theorem 2.7, M(L)  is a 
language. Clearly L is finite if and only if M(L)  is finite. M(L)  has the following 
interesting properties: (i) I t  is regular; (ii) it is finite if and only if it does not co- 
incide with a*, i.e., if and only if a* - M ( L )  = Ca. Thus (*) can be reduced to the 
following problem: 

(**) Is it recursively solvable to determine whether T(A) is finite for an arbi- 
trary one-way sa A, over a one-letter alphabet, with the property that 
I n i t (T (A) )  = T (A)?  
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