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ABSTRACT. A number of operations which cither preserve sets aceepted by one-way stack
automala or preserve seis accepied by deterministic one-way stack automata are presented,
For example, sequential transduetion preserves the former; set complemcntation, the latter.
Beveral solvability questions are also considered.

Introduciion

Tn [5], the notion of a stack antomaton, both deterministic and nondeterministic,
is defined. This device emhodies many features used in the recognition aspeet of
currently used compilers. Tt is less powerful than a Turing machine but more potent
than a pushdown automaton. Specifically, a stack automaten allows reading, hut
not writing, in the interior of its stack. (This oceurs, for example, in the reading of
symbol tables.) Tt permits writing and erasing only on a last-in first-out bagis. The
stack automaton also permits reading the input many times (technieally, a two-way
read which corresponds in one sense to a multipass compiler). In the present paper,
we discuss the important ease when the stack automaton reads the input tape from
left to right only, as in a single-pags compiler, This device, a generalization of the
pushdown automaton, 1s called a “one~-way stack automaton,” Of special interest
are the sets of words recogmzed by one-way qtack automata, hereafter called
“languages.”

Our motivation in studying one-way stack automata is twofold. First, it ig a
natural specialization of the stack automata. And second, mere of Angon can be
recognized by this type of device than by a pushdown automaton. Thus sets ac-
cepted by one-way stack automata may he better approximations te eurrently
used programming languages than sets recognized by pushdown aumma’ca, ie.,
context-free languages.

The paper is divided into five sections. In Section 1, one-way stack automata and
languages are introduced. In Section 2, various operations which preserve the family
of languages are cousidered. For example, intersection with a regular set preserves
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mic Languages Program.
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languages, as does transformation by a sequential (ransducer and word reversal. Tn
Section 3, it is shown that languages are not closed under complementation. In
Section 4, some closure properties of D-languages (languages accepted by deter-
ministic one-way stack automala) are presented. By a lengthy argument, it is es-
tablished thal D-languages are elosed under complemcentation. D-languages are also
closed under transformation by an inverse gsm (generalized sequential machine),
Deletion of a word ou the left, or on the right, also preserves D-languages. Docision
problems are considered in Section 5. In particular, it is recursively solvable to
determine if a language is empty or if a D-language equals a particular regular set.
It is recursively unsolvable to determine if an arbitrary language is context-free or a
D-language.

Since a one-way stack autematon is a complicated deviee, it is to be oxpected that
the arguments are often quite involved and messy. They frequently require con-
struction of one-way stack automata with special propertics. We have used our dis-
cretion and, whenever feasible, have either omitted or outlined the justification that
a particular one-way stack automaton recognizes exactly a certain preseribed set.
The methods employed also indicate alternative (but not necessarily sirapler)
praofs of known results about context-free languages.

1. Preliminaries

In this section, the basic objects with which we are conecerned in this paper, namely,
the one-way stack automata and the sels recognized or accepted by them, are
defined.

Roughly speaking, a onc-way stack automaton consists of a ‘“‘finite-state con-
trol,” an “input’ sequence or tape, and u “stack.” The device advances the input
tape at most one symbol per move. The stack is a “last-in first-out™ store, i.e., it
may be written or erased from the right end in the conventional way. In addition,
the interior part of the stack may be read but not rewritten.

A one-way stack automaton operates in the following manner. If the device is in
g state, reading both an input symbol and a stack symbol, then it simultaneously

(i) goes to another state;

{ii) moves at most one symbol to the right of the input symbol just read;

(iii) does exactly one of two alternatives: (a) it may move its stack pointer
(= read-write head) one symbol to the left or to the right, or keep it stationary, or
(b) if it is reading the rightmost symbol on the stack, then it may write a (possibly
empty ) finite sequence of symbols onto the stack, simultaneously crasing the symbol
just, read.

The reader is referred to [5] for a further discussion of & stack automaton asg well
as the motivation for its definition.

We now formalize the above intuitive description.

Definition. A one-way stack automaton {abbreviated “one-way sa’) is a 9-tuple
A=(K Z4¢81,8 qy,Zo, F) satisfying the following conditions:

(1) K is a finite nonempty set (of stafes).

(2) ¥ is a finite nonempty set (of Mnpuls).

(3) ¢ and § arc two elements not in 2 (the left and right endmarkers for the
input).

{4) T is a finite nonempty set (of stack symbols).
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(8) Zois in I" {the snitial stack symbol}.

(6) §is a function from K X (2 U {¢, $}) X T into the set® of finite subsets®
of 0,1} X K X {—1,0, 1} X I'" having the following property: () If
{d, q', e, w)isin d(y, &, £) and w # Z, then ¢ = Q.

(7) gois in K (the start state),

(8) F < K (the set of final states).

The formalism® (d, q’, e, Z) is in &(q, e, Z) means the following: Suppose the one-
way sa 4 is in state g, reading @ on the input tape and Z on the stack. Then 4 may*

(i) go to state ¢
{ii) move right on the input tape if d = 1 and remain stationary if d = 0;

(iii) move left on the stack if e = —1, move right if e = 1, and stay stationary
ife = 0.

The formalism (d, ¢’, 0, ) is in &(q, a, Z) means that if 4 is in configuration
(q,a,7) of K X (ZU{¢, $}) X T, then A may

(i) move on the input as specified by d;
(i) go to state ¢’

{iii) write w in place of Z.

{ Later in this paper the “write” command is restricted so that it is applicable only
when A scans the rightmost stack symbol.)

The symbolism introduced se far allows only a single move of the device. The
formalism is now cxpanded to allow discussion of scquences of basic operations of
the device.

Definition.  An instanianeous description (abbreviated 1D) of a one-way sa is
any element of K x (2 U {4, $1)" > (r U {1)*, wherc® | is a symbol not.in I,

The ID (g, a; -+ - 0, Z1 < - ZZ ;41 -+ Z}) denotes the fact that 4 s in state g,
reading input a;, with Z, «-- Z; on the stack and A seanning 7;. 1 is referred to
as the “stack pointer.”

Natotion, Givennone-waysa A = (K, Z,¢, 8, T, 8, q, Zo, %o, F'), the relation

b between ID%s is defined as follows: Let 4, 5, 1 > 1; a, -+, @ in 2 U {é, 8}
Zy, -, Z,inT; yinT%and Zin I

(1) I (d, ¢, e, Z;) isind(g, a;, Z,), where 1 <4 < kandl <j < 1, and (i)

e>0ifj=1,and (i) e <0ifj = {; then

(gae--- o, By 2o 1) | (q’,amt ey By Kl o Zz)-ﬁ
(2) M (d, ¢, 0, w)isind(g, ac, Z) for some 1 < i <k, then

(Q) Ay - a"ﬁ:yzﬂ !’ (l]’, Oipd e, yw’l)-

! For sets of words X and ¥, the (complex) product of X and Y, written XY, is the set {zy |z
in X, yin Y}, where zy is the concatenation of z and y. Let X¢ = {¢}, where ¢ is the empty
word. Ford > 0,let X1 = XX and X* = U7 X*. Thus 2* is the free semigroup with identity
generatod by =,

*Because of a difference in point of view between [5] and the present paper, a ene-way sa now
means a nondeterministic device. In [5], a one-way sa is taken as a deterministie device. ]
$To avoid long strings of quantifiers, unless stated otherwige ¢ and ¢’ are in K, a Is
inzlJ) {48, ZisinD, disin [0,1},andeisin {~1,0,1}.

* 4 is nondeterministic and thus may have other choices. .

5 Asin [5], for teehnical convenience many elements are called instantaneous descriptions even
though they do not correspond to actual configurations of a one-way sa, e.g., any ID with two
oecurrsnces of 1, .

Tagr -- anis to be interpreted as e.
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The relation | completely describes the atomic acts of a one-way sa. Condition
{1) allows one-way motion on the input lape and two-way reading of the stack.
Restrictions (1) and (i) prevenl A [rom going off either end of the stack. The con-
dition ¢ + d = k 4 1 is allowed, und it means that the automaton has left the right
end of the input tape. Condition (2) permits the device to write on the right end of
the stack, where writing e is actually crasing.

Note that A is unable to write in the interior of the stack, and it “blocks” if the
stack becomes empty.

The notation for deseribing a sequence of movements of A is now given.

Dejinition. For each z, y in (T U {¢, $1)*, and w1, wo, w', w2 in T7, lot

(% Y, ’L!)ﬂ'tﬂz) \P* (Q,, Y, "«L’J.’h’)z,)

if there exist k£ > 0, fo,gi,and hcfor 0 << < ksuchthat fo =g, go = 2y, ho =
wilwe, fe = ¢, g =y he = w'he, and (i, gs, b) F (firr s gisa y hops) for
0<i<Ek.

The final states in a one-way sa are used to “accept’ a set, of words by the follow-
ing procedure. ‘

Defindtion.  A'word z in =% is accepted by a one-way sa A if

(QO 3 ¢(E$, Z(ﬂ) ]~* (Qr € u,ﬂw?)

for some ¢ in F and some w; , we in ¥, The set of words accepted by 4, denoted by
T(A), 15 called a one-way sa language (abbreviated longuage).

We now specialize the model to be “deterministic” in nature, i.e., for each (¢, a, Z)
in K X (2 U{¢ 8) % T, there is to be one and only one “next move” which is
possible. .

Defindtion. A deterministic one “way sa is a one-way sa A = (K, Z, ¢, $ T

8; qu, £o, I') with the followmg properties:

() #(8(q,0,7)) =1, forea(*h (q,0,Z)in K X (2 U g, ¢ }) x 1N

(B) I 8(q, a, Zy) = (d, 7', e, %), then y = Zgw for some w in I'™,

Condition (8) prevents the stack from being emptied. (The leftmost stack sym-
bol is always Zo).

Defindton. A lunguage L is called a deferminisiistic longuage (abbreviated D-
language), if there is a deterministic one-way sa A such that T(A) = L

An important specialization of a one-way sa is now noted. By restricting the
stack to function as & pushdown store, i.e., to be read only at the right end, we ob-
tain a pushdown automaton. Speeifically, & pushdown automaton (pda) is a onc-way
sa with the restriction that (d, ¢, ¢, w) in 8(g, a, Z) implies e = 0. "

To obtain the family of deterministic pushdown automata, we need only start
from a one-way deterministic sa. Speciﬁcally, 8, deterministic pushdown automaton
is a one-wuy sa in which é(g, a, Z) = (d, ¢, e, w) impliese = 0.’

In this paper, we are concerned with one-way sa and languages. We were led to

7 For anyset ¥, % (E) is the number of eloments in E.

® We write §(q,a, Z) = (d, ¢', ¢, ¥} instead of 8(g,a, Z) = {{d, ¢', ¢, ¥)}.

% The ecomparison is not quite obvious, since a one-way sa has endmarkers while pushdown
automata customarily do not. Furthiermore, there is a slight distinetion between “e-moves”
in pushdown automata and moves in one-way sa in which d = 0. It is not difficult to prove that
the families of languages accepted by these two types of device are identical.
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these concepts by specializing to the one-way ease the stack automata aud lan-
guages accepted by stack automata as discussed in {3]. A practicul reason for study-
ing one-way sa is that more of Avcorn can be recognized by these devices thau by
pushdown automata. (As an example of this, consider the vole of declaration state-
wents. As noted in (3, a (two-way) stack automaton can search symbol tables and
thus can recognize deelaration statements. A {nondeterministic) one-way su also
can scarch symbol tables as follows: Tt guesses that it is reading an identifier on the
input tape, it has its stack pointer move loft into the stack, and then it guesses that
it has found the proper entry in the proper svmbol table, Bad guesses lead to un-
fruitful computations of the sa.) As is well known, Avcorn with the constraint thal
identifiers must be declared cannot be entircly vecognized by a pushdown automa-
ton. Thus sets accepted by one-way 2a may be better approximations to currently
used programming languages than sets recognized by pushdown automata. Unfor-
tunately, since ALeoL does not require declaration of all identifiers before their use,
it appears that one-way sa cannot accept all AvgoL programs.

2. Closure Properties of Languages

There are a number of operations which have proved to be important in the theory
of context-free languages.” In thig seetion, many of these operations are shown to
preserve languages. '

For technical reagons it is convenient to introduce two variations of one-way =a,
namely, the “one-way sa without left endmarker” and the “one-way sa without
endmarkers,” The latter device is useful in a number of proofs about languages. )

Definition. A one-way so without left endmarker is an 8tuple A = (K, Z, $,
T,6, qo, Zo, F), where K, 2,8, T', qu, Zy, F are the same as in a one-way sa, and §
is a function from K X (T U {$]) X T into the set of finite subsets of {0, 1} X K X
{—1, 0, 1} X T* satisfying (#) in the definition of a one-way sa.

The definitions of ID, +, % and acceptance for a one-way sa without left
endmarker are the same (with obvious modifications) as for a ove-way sa. Tor
example: ' '

Definition. A word w in £% is accepted by a one-way sa without left endmarker
y: | =*(K, 2,8, 1,8, g0, %0, FYif (qo, u$, Zo)) F* (g, ¢ wlpe) forsomeginF, i,
in I'7.

A “one-way sa A = (K, 2, T, 8, qu, Zo, F) without endmarkers” is defined
analogously. The definitions for TD, F, }* and accoptance are also defined anal-
ogously.

We shall show { Lemma 2.3) that the sets of words accepted by the two variations
of one-way sa coincide with the languages. This permits us to simplify certain
arguments. ‘ ,

Luvma 2.1, If L = P(A) for some one-ivay sa A, then L = T(B) for some onc-way
so B without Left endmarker.

Proor. Let L = T(4) for the onc-way sa 4 = (K, 2, ¢, § T, 3, o, Zo, /).
Let B = (Kg, 2,8, 1,85, Go,Zo, Fa), wheré Ky = K U{7|qin K}, each §anew
symbol, Fz = Fifeisnotin T(A), Fp=F U {G} il ¢igin T(A), and 85 is defined
as follows for each (g, a, b, 2) in K x 2 x (U {8§}) X I

(1) 53(603 $: Z) = {<1= o D: Z“)}'

% Context-free languages may be characterized as those sets aceepted by pushdown automata.

Journal of the Associntion for Computing Machinery, Vol. 14, No. 2, April 1967



394 8. GINSBURG, 8. A. GREIBACH, AND M. A. HARRISON

(2) (g, 0, Z) = {(0, @, e, 9} | (0, ¢, ¢, y) in 8(g, ¢, Z)}
U {(0) q,x €, y) 1 (11 q” e, 'U) in 5((15 ¢: Z)}
(3) 63(Q: bs Z) = S(Q) b7 Z)~u

Intuitively, B operates as follows. Rule (1) ensures that ¢ is in 2'(B) if and only
if ¢ is in T'{A). Given a non-e input word w, B first simulates the action of ¢ in
A (rule {2)). When A moves to the right of ¢, B records this by changing to states
g and then mimicking A4 {rules (2) and {3)). Formally, for ¢ in Z and w in %,

(g0, taw$, Zo) +5 (@, fawd, yily:)
ba (g2, aw$, golye)
|~§ ((I:’. ) & Y3 71y3’)

if and only if
(qﬂ » aw$: ZD]) %3 (gl 3 G‘W$, yﬂyll)
Fo (go, aw$, yelys )
}_:' (q3 s & 313193,)
Thus T(A) = T(B).

LemMma 2.2, If L = T(A) for some one-way sa A without left endmarker, then
L = T(B) for some one-way so B without endmarkers.

Proor, let A = (K, 2, %, 1,8, 00,Z, F).Let B = (K, 2, 1,85, o, %0, Fg),
where o and g, are new symbols, K, = (K X Z) UK U g, @1}, Fs = {9, @i}
feisin T(A), Fp= {d}ileiznotin T(A), and 8, isdefined as follows:

(1) BB(QO r & Z) = 5(90, @, Z) U {(0; ((],, a): €, ?/) l (11 Q’, € _1/) 1n 5(@0, a, Z)}

(2) 85y, @, Z) = 8(g, 6, 2) U{(0, (¢, a} e, ) [ (1, 0, &, ) in 8(g, a, Z)].

(3) 8s((g,0),0,2) = {0, (g, a),e,9) (0, g, ¢,y) indg, § Z)]

Ui, dr,e ) |(1,q,¢ y) inélg $ Z) and ¢ in F}.
Intuitively, B starts out by imitating A. If the next input in 4 is to be §, then B
goes to a state (¢, ¢) and simulates the movement of A under $ while B still scans
a. Formally, for w in 2* and a in Z,

(QUJ wa’$7 ZDD ‘-j (QI ’ G’$) y11yl’) "A ({12 y $y y21y2’)

F% (g, ¢ wslys ) for some g3 in F
if and only if
(G0, wa, Zo) 5 (0, a ’yﬂyll) Fs((g2,a),a, yslys') F3 (Guse ?/31‘1/3’)-

TFurthermore, eisin T(A) if and only if eis in T{R). Thus T(4) = T(B).

We are now able to show that the families of sets accepted by the various kinds
of one-way sa coincide.

Lemva 2.3, The following three statements are equivalent for a set L C T*:

(1Y L = T(A) for some one-woy sa 4.

(2) L = T(A") for some one-way sa A" without left endmarker.

{3) L = T(A") for some one-way sa A" without endmarkers.

i

15(g,a, Z) is always to be ¢ unless otherwise stated.
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Proor. By Lemmas 2.1 and 2.2, (1) implies (2) and (2) lmplies (3). It thus
suffices to show that (3) implies (1). Therefore suppose that 4” = (K", s, T, 8,
@, Zo, I') is & one-way sa without endmarkers. Let 4 = (K", 2,6, 8, T\ 5, g0, %o, ),
where 8(q, 0, Z) = 8(q, a, Z) for each (g, 4, Z) W K" X Z X T and 8(q, ¢, 7) =
50,8, %) = 1(1, 4,0, 2)]. Clearly T(A) = 7(4").

We summarize some obvious properties about one-way sa and one-way sa without
endmarkers in the following two lemmas. These lemmas assert that any language
may be accepted: :

{a} by some one-way sa { without endmarkers) in which the mitial state ocours
only at the beginning of the computation;

(b) by some one-way sa (without endmarkers) in which the longesi “write
instruction” has length at most two;

(¢) by some one-way sa (without endmarkers) with a leftmost symbol on the
stack whieh (1) is nover erased, and (ii) appears only as the le{tmost symbol on the
stack;

(d) by some one-way sa A (without endmarkers) with the following properties:
(i) 4 has a unique final state, and (ii) A accepts a word if and only if 4 ends in the
final state with exactly Zy on the stack;

(e} by some one-way sa (without endmarkers) with properties (a)-{d).

The above properiies are [ormalized [or one-way sa in the following lemma.

Levmma 24, Let 4 = (K, 2,6, 8, 1,8, qu, Zo, I') be a one-way sa. Then:

(0} There exists a one-way sa Ay = (Ky, Z,¢,8, T, 81, §o, Zo, F') such that T(A)
= T(A) and for cach g in Ky, wuwsin 6278, wy # ¢

(Go, wttn, Za)) 34, (g wr, yilye)

implies g 7 o .

(b) There exisis a one-way sa Ay = (Ko, 2, ¢, $, U, b2, o, Zo, F) such that T( As)
=T(A) and (d, ¢, e, y) in 6:(q, 0, Z) implies | y | < 2.

(¢) There exists a one-way sa Ay = (Ky, 2, ¢, %, Us, 85, G0, Zo, F) such that T( A3)
= T(A) and

(Goywnos, Zdl) FX, (g wa, )

implies yuye s in Zol T ~ 1 Zo) )
{d) There evists a one-way sa Ay = (K, Z, ¢, $, Ts, 8, o, Zo, {f}) such that
(i) T(As) = TCAY, (i) w s in T(As) if and only 1f

(o, #u8, ) F5, (Fy e Zdl),

(i) 8u(fy e, Z) = ¢ forall aand Z, and (iv) (d,1, e, w) in 8(g, a, Z) impliesd = 1,
e =0,andw = Z = 4.

(e) There exists o one-woy sa Ay = (Ks, =, ¢, %, Ts, 8, Go, %o, I's) such that
T{45) = T(4) and 4 salisfies (a)~(d).

Proor. We give the construction of each one-way sa. The proof that each
device has the desired properties is clear and is omitted.

(a) Let K; = K U |}, where g is a new symbol. Let &g, ¢, Z) = 8(¢q, 0, Z)
and &1( Gy, @, Zo) = {(0, ¢, 0, Zo)} forall g in K, ainZ U {¢, $}, and Z in 1",

i

 For each word y, |y | denotes the length of y.
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{b) Foreach (d,¢',e,Z1--- Z)iné(q,a, Z), () ilv <2 let (d, ¢, e, %y - - 7z
be in du(q, a, Z); (W) ifr > 2, let gz, 1 <7< r — 2, be new symbols and let,
(0,01, 0, Z1Zs) bein dulq, 0, Z), (0, go, 0, ZaaZoa) bein dolqy, o, Z,0)(1 < 4
< r — 3}, and (d, q', e, Z,37,) bein 8(gr 2, 0, Z,1).

Let Ko = K U {g:] g: defined above).

(¢) Tet Ky = K U {G and Ty = T U {Z4}, where §, and Z, are new symbols.
Let 8:( o, @, Zo) = {(0, go, 0, ZoZ0)} and &g, a, Z) = &(q, a, Z) [or each ¢ in K,
ainzU{¢ 8}, and Z in T

(d) Without loss of generality we may assumeo that 4 satisfies (¢). Let K, =
K, U{g s}, and Ty = Ty, where 7 and f are new symbols. For each ¢ in K and
ainEU {¢, $})13t (1) 54((]7‘112) = 53((1: CL,Z) U {(0; (I’e:y) ] (]7']’:(})'?/) insﬁ(% O!,Z)
and ¢ is in 7} for each Zin 0 (i) 8:{ G, 0, Z) = {(0, 4, 1, %), (0, §, 0, €)} for each
Zin T~ {Z}; (i) 8§, 0, Zo) = {{1, 1,0, Zo)}.

(&) The proof of (e) follows from the fact that each of the constructions in
{a} (d) may be carried out without destroying any of the other properties.

The analogue to Lemma 2.4 for one-way sa without endmarkers is now given.

Lenvvia 2.5 Let A = (K, 2, 1,8, g0, Zo, IF) be a one-way sa withoul endmarkers.
Then:

(2) There exists o one-way sa Ay = (K, 2, T, 61, §s, Zo, ) without endmarkers
such that T(Ay) = T(A) and for cach qin Ky, w5 e, wpsin E¥

(Go,wnee, Zal) F4, (g, we, 1y

mplies ¢ # Go.

(b) There exists 0 one-way sa Ay = (Ke, 2, T, 8, 90, Zo, F) withow endimarkers
such that T(As) = T(A) and (d, ¢, e, y) tn 8a{q, 0, &) implies | y | < 2.

(¢) There exists o one-way sa 43 = (I, 2, T3, 8, Go, Lo, F') withou! endnarkers
such that T(Az) = T{A) and

(Go, wawr, Zol) F3; (g, we, wlys)

Tmplies wys s in Zo( T — [Zo}) ™. )
(d) There extsts o oneway so Ay = (Ky, B, Ty, 8, Gn, 2o, {f1) without end-
markers such that (1) T(As) = T(A) — ¢, (i) wisin T(AL) ¥ and only +f

(quﬂzu,l -201) ﬁq (fr €, Z-O‘Dr

and (iii) 8(f, @, Z) = ¢ for all w and Z."

(&) There exisls a one-way sa Ay = (Ks , 2, s, 85, o, Zo , Fs) without endmarkers
such that T(Ay) = T(A) — (e} and Ay satisfies (a)—(d}."

Proor. The proof is a trivial modification of Lemma 2.4 and is omitted.

The first result on operations concerns the intersection of a language and a regular
set."

13 Note that ¢ cannob be in T(4s) sinee (Go, & Zol) #*(g, & ) only i g =G0, = Zo
and ys = e.Bimilarly ecannotbein T (4;).

14 A Anite-stale gutomaton {abbreviated fsa) is a §-tuple 4 = (K, =, 4, pg, F), where K and =
are finite nonempty scts (of stales and inpuls respectively), 8 is a funetion from K X Z into £,
pois in K, and F C K. The function § is extended to K X Z* by defining é(g,e) = ¢ and
8(q, z6) = 8{6(g, ), a]for each (g, z, ) in K X T* X T Aset B C 5* is sald to be regulor if there
exists an fsa A = (K, Z, 8, po, ) such that & = T'(4), where T(4} =~ {z [ 8(ps, 2) in I'].
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TaporeM 2.1, If L is a language and R is a vegular set, then I N R is a language.

Proor. Let L = T{A), wherc A = (K1, 2,¢,8, T, 6, q, Zo, I'1) is 2 one-way
sa. Let R = T(B), where B = (K3, 2, 8, po, I2) 13 an fsa. Extend 6 to a mapping
of Ko X (2 U {¢, 8) by the condition &(q, ¢) = d(g, $) = ¢ for each ¢ in K.
Define ¢ = (K1 X Ko, 2, ¢, 8, 1,8, (¢, po)» Zo, Iy X Fy), where § is defined as
follows: For cach (¢, a, Z) in Ky X (2 U {4, 8}) X T and each p in K,

6((, p), 0, 2) = (0, (¢, p), ¢, YN0, ', e, 9) in &g a 2)}
U {(1’ (q/: 52(7), a))y €, y)|<1) qI; €, y) in 61(% a, Z>}
Clearly T(C) = T(A) NT(B) = L NR."

CororLary 1. L — R s a language for each language L and each regular set R.

Proor. Since R is regular, 2* — Risregular [6]. Then L — R = L N (Z* — R)
is a language by the theorem.

CoroLLARY 2. If L is a D-language and R is a regular set, then LN R and L — R
are D-languages.

Proor. Let A and C be as in the proof of Theorem 2.1. If L is a D-language,
then A is a deterministic one-way sa. Clearly (' is deterministic, so that L N R is a
D-language. Since the complement of a regular set is regular [6], L — R =
LN (2* — R) is also a D-language.

We now consider the basic operations of union, product, and *. Iirst, however,
we prove a result involving context-free languages.

Tureorenm 2.2. Let L © =¥ be a context-free language. For each a in Z, let 2, be a
finile set and L, S 2, be a language. Then

H={z - 2|n >0 a, ,a6 m 2 z i L, e a in L

18 ¢ language.

Proor. LetL = T(A),where A = (K, Z2,T,8,q0,Z, F) is a pda. Without loss
of generality, we may assume that there is no element @ in 2 such that e is in L, .
(For otherwise, let 7(a) = {a} if €is not in L, and 7(a) = {¢, a} if aisin L, . Then
(L) = U . ping 7(@) -+ - 7(ax) is context-free and

H={x - x|n>0, ar,--,a, In 2,
Ty in Laj"“{é}, ap - Qn in T(L)})

Then, for each a in 2, L, = T(A,), where A, = (Ko, Za, Ta, 80, Goa s Zoa, {fal)
satisfies Lemma 2 ”(e), and all the K, , K, I’y , T are pairwise disjoint. Let §o be a
symbol notin K U U, ;.5 (K, X K) U (2 X K). Let A be the one-way sa without
left, endm&r\cr (K S8, 1,8 Go, Zo, F), where K = {Go} UK U U. (K, X K)
UEXK), I‘UU Ia, S=U,3,, F=FU{g|ifeisinLandF =F
if eis not in L, and 5 is defined as follows for (a,b,¢, Z) in 2T X £ X K X T':
(1) (a) 8o, b, Zo) = {(0, (goc, @), 0, ZoZoc)| ¢in 2}.
(b> 5(607 $; ZO) = {(17 qo ’ 03 ZO)}
(ii) ForZ,inT,and ¢, in K, ,
S(((ja ’ q)) b7 Za) = {(dy ((Ia’, Q): 6, U))|((l, qa,) €, U)) in 6a(qa ) b! Z,,)}
U (1, (a, ), 0, &)|(L, fa, 0, Za) In ba(Qa » b, Za)}.

15 The proof eould be simplified slightly by considering one-way sa without endmarkers. The
present form is given in order to obtain Corollary 2 to Theorem 2.1.
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(i) 3((a, g), b, Z) = {(0, (a,¢),0,w) (0, ¢, 0, w) in 8(q, a, Z)}
U {0, (goe, 40, 0,wZe)|(1, 6,0, w) iné(q, a,Z), cin 3],
(iv) 5((11-, 9), 8, Z) = {(0¢ (2, ql): 0, w)i(O, qu 0, w) in (g, a, Z)}
UL, ¢, 0, (1, ¢, 0, w) in 8g, a, Z)}.
Intuitively, A starts by (i), simulates 4, , senrching for w in L, , by {il), and
simulates A on e by (iii) and (iv). Formally, the construetion dees the following.
By (i-b), eisin T(A) if and only if ¢ is in H. By (i-a),

(o, 28, Z1) |z ((Goa, q0), 28, ZoZos])
forallein = and & # ¢ in 2. By (ii), when v ¢,

((qoa» 40, 298, uZodd) F3 (o, @), y$, ul)
if and only if = is in L, . By (iii) and (iv), when x = ¢,

((a,q), 28, ul) Fiaw ((goe, 4, 28, vZe])

if and only if
(q; a, M]) }'; (q’r € 7"1)
if and only if
((aw Q): $; uD !—fi*'(iv) (q,) € 7"1)'
Fork > 1 and each z; in %,
(Go, o - @B, Zol) 3 (o, q0), 22+ - 28, Z4])

‘TE ((a2 ’ ql)) Ly e Wk$, ul])

t_z ((a'k: Qk—l), $: uk—ﬂ,)
FE (qk;'—;; uk1)r

where the states {(a; , g»—1) arve precisely those states in £ X K which follow steps of
type (ii), if and only if

(qg, Oy v O!:afﬁ;, Zn/!) |‘j (Ql , O e g3, ul?)
fj (g2, a5 - @, wl)

1

T‘: (Gt , @B, wial)

|_j (qk » & u-';i)

and z;isin L,, foreach ¢, 1 < ¢ £ k. Thus T(A) = H,so that Hisa language.

Since {a} U {b}, |ad}, and ™ are context-free languages for 2 = {a, b}, we obtain
as a corollary:

Turorem 2.3.  The family of languages is closed under undon, product, and «.

We now introduce a transformation device which preserves languages.

Definition, A sequential transducer is a b-tuple 8§ = (K, Z, A, H, s9) whera

(1) K, Z, and A are finite nonempty sets (of siates, imputs, and outpuls respec-

tively);

(1) soisin K (the starf state);
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(ii1) H is a finite subset of K X =¥ % A" x K.

The sequential transducer transforms words as follows:

Defination.  Let 8 = (K, Z, A, H, s0) be a sequential transducer. For cach % in
2% let 8(u) be the set of words » with the property that there exist & > 1 and words
Uy, g L };*, vy, Lo AT and g, o » 8 in K such that y = wy - - - Uy,
v=wn o v, and (8g, uan, vapy, s ) Isin H foreach 0 < 4 < k. For each U b A
let S(U) = U, 50 S(u).

Given a sequential transducer § = (K, 2, A, H » %), there exists a sequential
transducer T = (K, 2, A, H, §) such that (1) ST = T(U) forall U € 3% and
(i) (s, u, 2, §') in i implies §* # & . (For let 3 be a new symbol, K = K U {5},
and H = H U {(50, u, v, s)|(s0, u, v, 8) in I}.)

Turornem 2.4, S(L) 4s a longuage for each sequential transducer 8 and cach
longuage L.

Proor. Let L be a language. Then 7. = 7T{4) for some one-way sa A =
(K1,Z, ', &, qu, £y, F1) without endmarkers. Lot § = (Ks, 2,0, H, 50) be a
sequential transducer. As noted above, there is no loss of generality in assuming that
(8,1, 0,8} in H implies 8" # 5, . We may also assume that $ is not in A and that A
satisfies (¢) of Lemma 2.5. Let

mo=max {1, [u|,lo| (s %4 ¢) in H forsome s ¢ in K.

Let Zn = UL 2 and A, = UTho A% Let B = (R, 4,8, 1,6 (g, 8, ¢ ¢), Zy, ) he
the one-way sa without left endmarker with K = K, X K X 2, X An, F = Fy
X (Ks — {s]) X {el X {¢}, and 6 defined as follows:

(1) Foreach (g, e, Z) in K; X (A U{$}) X I"and each s in Kz,

(g, 8 & €),a, Z) = {(0, (¢, 5", ,0), 0, Z)[(8, w, v, ) in H}.

(i) Foreach (g,8,a,¢)in Ky X Ky X 8 X (AU i3} } and for each (2, y) in
Zm X Ansuch that |z | < mand |y| < m,

8((0 8, ez, y), ¢, Z) = {(0, (¢, 5, am, ), & w)|(0, 7, o,uw) in (g a Z)
U {(01'(q’: 8y Ty 3]), €, Q.U)Kl, q, ¢ w) in 51(% &, Z);

(1) Foreach (g, b)in Ky X Ky X Aand each yin A, with | 5| < in,
(g 86 by), 0, Z) = {(1, (4,8, 61,0, Z)}.

(iv) Foreach (¢, 5 Z) in Ky X Ky X T,

5(q, 8,6 6,8 Z) = (1, (g,8¢0¢),0, 7).

Intuitively, B operates as follows. B simulates the action at state s (i.c., the staye
of Bis (g, s, ¢ )} by guessing that S takes a word u into » (formally, (s, u, v, 8 }
sin f,i.c., by (i)). By (ii), B simulates the action that 4 might take on u without
advaneing the input tape. In (ii1), B advances the input tape over S{u). The cycle
is repeated until § is reached, at which time (iv) is applied. Formally, v is in S({ L)
if and only if there exist wi, »-+, e, o1, -, Bu, St ", % @yt Geo
Yo, " Uk, Yo, -,y withthe following properties: o= Zo; % =€ geisin
Fu; each gy isin T* — {¢ (by (¢) of Lemma 2.5);

(i) Uiga * U, yﬂyel) B (ot s Ui - W, ym1y:-+1) for 0L<i<k
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(s0 that wy -« - ugisin L);

(8:, Wipa, Vapa, Sep1) isin H for 0 < ¢ <k

(so that vy~ vpisin S(uy -+ - we);and v = vy -+ v . The latter occurs if and only if
there exist wp, «--, ey U1, 0, Uk, S1, Sk iy, Qo Yo, e,y
’ r. . . . 1 L. A
Yo, -, yr with the following properties: yo = Zo; yo = €; qisin Iy ; each yy,
isin I — {¢};
. ) ’ : '
(g, sty 6 €y v - S, ydlys ) Fa (@i, Semy win, Vi), Vo - S, wdy)
* A 14
Fo (it Sirr, € 0aga), Vgt - 068, Yalyin)
® oo . & ’
Fo ((qirry Sivty € €)y vare =+ 08, Yoralyip)

for 0 < 4 < k; and
(((I/c y Sk, 6 6)7 $) ?//C1ykl> }—B ((Qk 3 Sk, € 6)7 €, :Z//v"}?//v‘,%w

which, as is easily seen, occurs if and only if v is in T(B).

A number of important special cases follow from the theorem on sequential
transducers.

Definition. A generalized sequential machine (abbreviated gsm) is a 6-tuple
S = (K, Z,A, 8N\ q), where

(1) K, Z, and A are finite nonempty sets (of states, inputs, and outputs re-
spectively); :

(i1) & 1s a function from K X Z into K (next state function);

(iii) Ais a function from K X ¥ into A* (output function);

(iv) golis in K (start state). ‘

s and X are extended to K X =% by letting 8(q, ¢) = ¢, M(q, &) = ¢, 6(q, 2a) =
3[8(q, x), a], and A(q, za) = A(q, £)N\(8(q, z), a) for each (¢, z, a) in K X =¥ x 3

TeroreM 2.5. If S = (K, Z, A, 8, \, qu) s a gsm and L is a language, then
S(L) = {Nqo, x)| z in L} is a language.

Proor. Let 8 be the sequential transducer (K, Z, A, H, qi), where H =
{(q,a,N\q,a),8(q,a))(q,a) in K X 2} U{(qg,¢e¢ q)qin K}. For each z in 27,
S(x) = 8'(2). The result then follows from Theorem 2.4.

Languages are also preserved under inverse gsm.

Turorem 2.6. If S = (K, Z, A, 8, N, qo) 25 a gsm and L is a language, then

SHL) = {z in Z"|Ng, ) in L)

s also a language. ' :
Proor. Let 8 be the sequential transducer (K, Z, A, H, qo), where

H = {(g,Mq, a), a8 a)|(g,a) in KXZU{(g,¢¢q¢lq in K}
Clearly S’(x) = S7!(x) for each z in =*, The result then follows from Theorem 2.4.

I'rom Theorems 2.5 and 2.6 there immediately follows:

CororLary. If his a homomorphism' and L is o language, then both h(L) and
R7Y(L) are languages.

16 Note that § is needed in order to sefve as input in case v;.; - -+ v =  for some j.
A homomorphism is a mapping k from Z* into A* such that k(e) = e and hia, -+ ar) = k(@)
«++ hiay), each q; in .
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Another interesting operation which preserves languages is “quotient by a regular

5Ct.”
TuporeM 2.7.  Let L be a language and R o reqular set. Then

L/R = {w|wy i L forsome y in R}

and
{wlyw in L forsome y in R}

il

R\L

are languages.
Proor. Let L € 2* be a language and ¢ a new symbol. Let & be the homo-

morphism defined by h(a) = a foreach ain Z, and A(c) = e Consider the gsm S =
(@, a2 U e}, A, 8,0, q), whereforeachain®, 8(qo,0) = qo, 8(qo,c) = q,
5((11 ; (l) = 6((]1 ’ C) = 1, >\((IO » a) = 4, and )\((10 ’ C) = )\(ql » a’) - )\((h ,'(f) = €.
Clearly S(z) = x and S{xcy) = « for each x in =% and y in (T U {¢})™ Since
I = k(L) N ¥R is a language, L/R = S(L”) is also a language. -
The proof that R\L is a language is similar.
CoroLLaRY. If L is a language, then so are
Init(L) = {u|uv in L for some v in 3%},
Fin(L) = {v|uw in L forsome w in 2%},

and

i

{vluww in L for some w,v in =%,

Sub(L)

Proor. Init (L) = L/2* Fin (L) = 2™\L, and Sub (L) = Tin (Init (L)).

The family of languages is closed under reversal."™ To prove this, we “run” a one-
way sa without endmarkers “backwards.”

TreoreM 2.8. If L is a language, then so is L".

Proor. Let L = T(A), where A = (K, Z,1', 8, qv, Zo, F) is a one-way sa with-
out endmarkers. We may assume that e is not in 7(A). (For otherwise T(A4) — {e}
is o language, we can show that (T(A4) — {e} )" is a language, and 7'(4)" = (T(4)
~{e})" U {¢ is a language.) We may also assume that 4 satisfies (e) of Lemma 2.5.
Thus F = {f} for some fin K. Let

B = (KB y & ¢) $> P; oz , (fy ¢7 €, 0)) ZO) {fl}))
where f; is a new symbol, Ty = T° U ' U I?,
Ky = (K X (2U{¢,8}) X Iy x {0,1}) U A,

and 8, is defined as follows:

(i) Suppose (d, ¢, e, y) isin 8(g, a, Z). For each bin £ U {¢} and ¥ in I':

(a) ifyisinT,let (d, (g, a,¢0), —e, Z) bein 85((¢, b, ¢ 0),b, 4);

(b) ify =e¢let (d, (¢ a,¢0), —e YZ) bein ds((¢, b, ¢ 0), b, Y);

(C) lf:lj = Y1Y2 y Y1 and Yz in F, let (0, ((I, b, ZYl ,d), 0, 5) be in 51i<(q/7 b: 670>’
b, Ysy) and (d, (q,a,¢,0),0,2) ind,((q, b, ZY1,d), b, Y1).

(i) (1,£,0, Zo) is in 83((qo, b, ¢ 0), b, Zy).

(i) (1, fi,0, Z) isin 8s(f1, $, Zo).

®Let E be an abstract set. Let ef = ¢ and (za)E = az®, for ¢ in E, and z in E*. For U C E*,
let UE = [w® | win U}. UR is called the reversal of U.
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Intuitively, (¢, @, X, ) is an analogue of g in 4 and represents the fact that in 4,
o is applied at ¢. (a), (b), and (¢) of (1) enable B 1o simulate “moving backwards”
in A. In particular, suppose that at state ¢, under input a, and reading Z on the
stack; A moves to y and writes 4 on the stack. Then at ¢ b, e, ), an analogue to
q', under the influence of ¥ on the stack; I goes to an analogue ol g which acts only
under o, Formally, wis in T(A) if and only if thereexist g, »+ e, o, -0 G 1,
Wo, o, Wher, Moy Uosttt s Us, ¥e such thal @ = f, w = oy = Zy,
yo =y = ¢ apwo = w, and

(o, Geie !fﬁiéfﬂ’ Vora g, e, wiin )

Fa (Qher s Qeoriny Ynea Y1)
ca (e e )
This holds if and only if there exist vy, - -+, 2e_1 such that vaae, = w for each ¢ and
((f, 66,00, 8678, 230 b ((ge, ey & 0), @eowfa®, tilyio)

L& B ’
'} 1: (Gr_2, Qp 2, € 0), Ajptp—0D, Elk)ﬂi/hﬂ)

Lo (e, a6, 0), @, yalis)
Fu(f1, $ Z)

Fu (jl ) & ZO?):
e, w”isin T(B).

3. Operations Which Do Not Preserve Languages

In this section we exhibit certain operations which do not preserve languages. This

is done with the help of a representation theorem for recursively enumerable sets.
Definition. A phrase structure granunar s a d-tuple ¢ = (V, Z, P, o), where (i) V

is a finite nonempty set, (i) T & V, (iil) £ is a finite set of ordered pairs {w, ¢},

. . . T ok . & . -
written w > o, with win (V — Z)7 — {efandwin V7, and (iv) o lsin V — Z,

A phrase structure grammar selects a certain set of words as follows.

Notaiton, Let G = {V, Z, P, ¢) be a phrase structure grammar. For w, y in v,
write w = g if there exist 21, 22, u, v such that w = zuzs, y = 2wz, and u — v
is in P. For w, y in V™, write w 2% y if there exist » > O and z, - -, z» such that
o=, & = Yy, and g; = 2 for 0 < 4 < Let L(G), called the set “generated’”
by G, be the set {zin £ o X =]

The following proposition is well known [2]; “For I, € ¥, I = L() for some
phrase structure grammar ¢ if and only if L is recursively enumerable."

We now associate a sct of a special form with each phrase strueture grammar.

Notation. Let 6 = (V, Z, P, ¢} be & phrase structure grammar. Let ¢ be a new
symbol, P = lu;— ;11 <7 < k},andlet dy, - -, o, bo k new symbots. Let L)
be the set

LG = L dasews e Sw"c L wn , we IV,

i In P, 1 <4<k~ {4

t See [3] for a definition and a discussion of recursively enumerable sets.
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Levaa 3.1, Ly/(G) ds a deterministic context-free language™ for each phrase struc-
ture grammaor G

Proor. Forw;—v;inP, 1 <0<k lebus=ua - wmmando; =g i,
each Ui andvgin V. Let A = (K, 2, 1,8, Zo, qo, {f]) be the deterministic pda®™
withs = VUle, dy, -, dil,

K = {qc,,ququd,f} U 811 <4<k 0<j<m(t)}
Uft; |1 <¢ <k 0<j<a(d,

= 3" U{Zy}, Zobeing a new symbol, and 3 defined as follows:
(i) 8(qo,a, Zo) = (g0, Zon) for each ain V.
5(qo,a b6) = (g0, ba) foreachaandbin VU {d;|1 < ¢ <k},
5(qo, 6, b) = (qu,b) foreachbin VU {d: |1 <7 < &}
(it} q,a,a) = (g1,¢) foreachain V.
5(q1, 6 dy) = (s, ¢) foreachl <z < L
(i) 88y, & Ritnn-n) = (Sig4ny, ) foreach 1 <4 <k, 0 <y <m(:} — L
5(81'("‘(«;)_1) , & Ui) = Uio B e) foreach 1 <2 < k.
(1v)  8(ksj, Lty 5 @) = (tijeny , @) foreachein ¥ U {Zo},
1 <i<k 0<j5<n()— L
5(timi—1 » ¥, @) = (g2, 0) foreach 1 <1 <k, oin VU {Z}.
(v) &(gz,a, a) = (q,e) for each ain V.
5({12 y G ZU) = (f) ZO)

(Vi) 5(f: e Zo) = (QO, ZO)

(vil) (g, a, b) = (d,b) for all (g, a, b) not prev10usly specified.

The pda 4 operates as follows:

(1) 1In(i}, A copies the input onto the stack until the symbol ¢ is read.

(2) In (ii), it cheeks the input against the stack until some d; is read on the
stack. The d; is then erased.

(3) Without moving the input, A checks in (iii) to see if the word «, is on the
stack (erasing u, in the process).

{4) In (iv), 4 sees if 2% is on the input while not altering the stack.

(5) In (v), A matches the input against the slack until ¢ is read.

(6) In (v), A goes to an aceepting state if ¢ is read on the input and Zg on the
stack.

{7} In {vi), A then goes to the start state, the cycle (beginning at step (1)}
bemg repeated.

Tt is a straightforward matter to verify that T(A) = T2 (6.

The following notation is uscful.

Notation. For o in Z, let @ be a new symbol. Let ¢ = eand # = d - d for
each 1 = gy -+ - ag, all a;in 2. For each {7 & 2¥ let U = {4 | uin U}. For each
phrage structure grammar &, let Li(G) = Lll(G) (5H*

CorROLLARY. T.(G) is a deterministic context-free language.

Proor. (£)* is regular and L () is a doterministic context-free language. The

™ A set £ is said to be a deterministic context-free language if L = T'(A) for some deterministio
pda.

% By definition of a phrase structure grammar, (i) > land n(?) 2 0 for each 7.

% We uge the definition of deterministic pda as given in [4] rather than the specialization of &
deterministic one-way sa given in Section 1.

B Jfn(f) = 0, this becomes 8(lio , ¢, 8) = (g, 0}.
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reslt then follows from the fact that deterministic contexi-free lunguages are closed
under product on the right with regular sets {4, Theorem 3.3].

Notation. Let V be a finite set conlaining o and let ¢, dy, - - -, d be #+1 new
symbols. Let

Lik, V) =lode | 1 <0< by dinc |1 < 7 <k,

aft

woand g in VY {zet® |2 in VL

Lemyma 3.2, Lk, V) is a deterministic context-free language.
Proor. Let A be the deterministic pda (K, 2, T, 3, qu, Zo, U1, fal )}, where

K= {q, 0,0, d0 05 Uls|0<i< 4,
2’:1‘7Uﬁu{0,dl,"';dk}i
P: 1”UvU{ZO})

Zy heing a new symbol, and § is defined as follows (¢ and b are arbitrary elements
in ¥V):
(1) 8(qo, 0, Zo) = (g, o)
8(qr, diy Zo) = (@2, 4o) lor 1 £ ¢ X k.
6(qa, ¢, Zo) = (80, Zy).
(i) 8(so, a, Zy) = (80, Zoa).
6(s0, ¢, b) = (80, ba).
d(sg, ¢ ) = {8, a).
(iii) 38,0, a) = (8, ¢).
§(8,d,a) = (8, e).
(iv) 5(s:, a, a) (39, €). ‘
5(82, d_g s C’f) = (8, a), 5(82 , df ) Zu) = (84 , Zu)
{v) sy, d,a) = (8, ¢).
‘ 8(s3, €, Zn) = (f]_,Zu).
{(vi) 8(su, @, a) = (84, €).
8(sy, ¢, Zo) = (84, Zy)-
(Vii)(m 5(8{) » €y /o) = (fz y 470).‘
© 6o, di, Zo) = (84, Za) for I £ 4 < k.
(viii) 8(g, d, Z) = (d, Z) for all (g, &', Z) in K X ¥ X I' not previously
defined.
Intuitively, A operates as follows:
(1) In (i), A checks to see if the first three input symbols are od.c for some 4.
(2} In (ii), A copies the input symbols onto the stack until the symbol ¢ is read.
(3) In (ill) and (iv), it matches the input against the stack until some d; is
read on the input. ‘ ‘
(4) In (iv), the d; Is read on the input without altering the stack.
{5) In (vi), the input is again matched ugounst the stack until the symbol ¢
is read.
(6) A then goes to s, and cycles. ‘
(7Y If at step (3), a symbol 4 is read, then A goes to s; where it compares, in
{v), d on the input with b on the stack.
{8) A accepts if, after reading the input, the stack is cmpty c*xcept for Zy .

i

i

1 Phe rules in (vii) are needed in case y1y2 = eor £ = &,
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Tt is o straightforward matter to formally verify that 2(4) = L{k, V). The
details are omitted.

We now obtain a representation theorem for recursively enumerable sets.

TeporeM 3.1, For each recursively enumerable set £ C =¥, there exist deter-
mangstic contexl Jree languages T and Ly, and o homomorphism k such. that

E = h(L 0V Ly).

Proor. Let E = L{&), where G = (V, Z, I, v} is a phrase structure grammar.
Let L = L) and Ly = L{k, V), where k is the number of productions in P. Let
4 be the homomorphism defined by A(d) = a foreach d in Sand h{a) = eforeacha
inVUled, -, dd.

Let 2 be a word in £. Then there exist wi, W, Uy , By for 0 < j < wm such
that we = We = € Ugy = 0, WallyemWWn = T,

Wil (W = Wike(H Wiz ,
With @y = vpy 0 P, for 0 £ 7 < m, and
Waty(ytyz = WG+ W12
for 1 € 5 < — 1. Foreach wy, 7, and we, let
s(wy , 7, we) = ws wy ewy davye
and £(wy , 4, we) = wie; davscws"v"w;“c. Then
z = H{uwn, g(0), we)t(wy, g(1), we) --- Www, glm), W)
is in I4( (). However,
r = odyges(ionigny, (1), we) -0 8(Wmithpemy , §(m), W) ek,

Therefore 2 is in L(k, V), i.e, zigin s N Ly . Then & = h(z) is in h{ Ly N Ly}, ie.,
FCrLy O Ly). '
Suppose that z is in A(Ly 1 Le). Thus # = h(z) for some zin Ly N L: . Then

7 = t{wa, g(0), wn) - wm, glm), wmld
for Some wo , Wez , ** * 5 Wt » Wiz, g{0), -+, g(m). Similarly
¢ = o dryes(yn, S(1), yua) -+ $(Yar, F(R), ym)3"cE

for some i, Wiz s << Wnr s Yno » S(0), -+, f(m). Then m = n (since there arc exactly
2m-+2 and 2r+2 oeeurrences of ¢ in z). By observing the ocourrences of d; in 2,
we see that f(3) = g(2) for 0 < ¢ < m. We also see that

Wor = W = € Uy = 0, Wallys) '::' Yo, We =~ Yo,
Wit YpiyWiine = Yale ™ Wallg)We
for 0 < 4 < m, and Walyemwme = = Thus
o =2 WolpyWe = Wiy = <+ = WlpmWm = T,

lLe., ¢ is in B, Then h(T4 N L) < F and the proof is complete.
Remark. We mention without proof that using a standard coding technique,
Theorem 3.1 can be extended to the following: Given 3, let 2o = £ U {a, 6}, cand
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b being two new symbols. There exists a homomorphism A of 2, onto =% with the
following property. For euch reeursively enumerable set & C =¥, there exist de-
terministic context-free languages L) © S and Ly © =," such that £ = I N Ls).

Using the representation theorem, several nonclosure results are now obtained.
In Section 4, other nonelosure results are obtained from the representation theorem.

TuroreM 3.2. {(a) The family of languages does not contain the infersection of
some pairs of deterministie context-free languages ond does not contain the complement
af some contexi-free languages.

(b) The famdy of languages is nol closed wunder inferseclion or complementalion,

Proor. It obviously suflices to only prove (2). To thisend, let £ be a recursively
enumerable, nourecursive set. Such & set does exist [3]. In particular, ¥ is not a
language. By Theorem 3.1, there exist deterministic context-free languages L,
and L, and a homomorphism 2 such thal A(Ly N L) = E. Suppuse the fumily of
languages contains the intersection of each pair of deterministic context-free lan-
guages. By the corollary to Theorem 2.6, A( Ly (1 L) = E is a language, a contradic-
tion. Suppose the family of languages contains the complement of each context-free
language. Since the family of languages contains the union of context-free languages,
il thus contains the mntersection of context-free languages, a contradietion.

In Theorem 4.1, we prove that the complement of a D-language is a D-language.
By (a) of Theorem 3.2, languages are not closed under complementation. Thus
we have:

Corowrary. There exisis a conlext-free language, thus a language, which is not a
D-language.

4. Closure Properties of D-Languages

We now treat some basic closure properties of D-languages. In particular, we show
that D-languages are preserved under (i) complementation, (ii) removal of a
fixed initial subword, and (i) removal of a fixed final subword.

We first turn o the proof of closure under complementation. The argument
involves a number of intermediate steps and auxiliary concepts. The principal dif-
ficulty is that a deterministic one-way sa may fail to leave the input because it gets
into & loop or attempts to write in the middle of the stack.

We first define a new relation |¥ on IDVs. Intuitively, |* is an atomiec move
which leaves the contents of the stack unchanged (although the stack pointer may
move).

Notation. Let A = (K, Z,¢,8, 1,3, qo, Zv, F) be a one-way sa. Write

(g, oz, yilye) F° (g &' o' lys)
if (g, az, yilwe) F (¢ 2, ') wod ye = 'y’ Write
(g o, pily) F* (0 T
if there exist ID’s 20, -+, 2+, 7 > 0, such that 2 = (g, az, wly),
2 = (g, &, '), and 2y FPapafor0 <7 < r.
The first two lemmas involve regular sets and one-way sa.
Levma 4.1. Let A = (K, 2,6, 8, T,6, g0, Zo, F') be a one-way sa. For each p, q
in K, and am 2 U {¢, $, the set
Roe = {z a0 T | (p, 0, 21) ™ (g, a, 2}

13 regular.
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Proor.  Without loss Of gencwlilyj it may be assumed that X N1 = ¢ Let
(p,7,0)in K X K ) (2 U{¢, 8)) be given. Let P e the T()llxmmo set of “rules.”
Foreach (8,8, 2,2 ) nK x K >< 1‘><I 0,8, e 2 isinés,a 2)

(1) and e = 0, let QuZsQy — Qu7s' Qs be in P

{ii) and e = 1, let QiZs2'Qy — Q77'sQ0 be in P

(i) and e = —1, let QuZsQ — Qus'ZQ, be in P.

For w, LU’, y, ¥ in (K um* ‘md QuQv — Quy’ Q: in P, write wyu' It wyw’, P or
wand 1w’ (K U Y, write w = w’ if there exist Wy LW, T > 0, stich that
wp = W, Wy = w,and w; si for @ <4 < (lo(nly (v, 0, ) (g a, 2])
if and onlv il ap = xg. By Lomma dof (3 jzinT “ap = 2q} is regular. Therefore
I 400 18 regular,

The next lemma associates with each one-way sa an equivalent one-way sa
that checks the contents ol the stack for containment in 2 finite number of reguhw
sets.

Levva 4.2, L A = (K, Z,¢,8, 1,8, g0, 20, I") be a one-way sa (ziufjm earh i,
1< g iy Lot R cr* be o fe.,uda; oet Then there exist o ang-way sa A" = (K, =, gé,
8T8, g, 2, F), a mapping ¥ oj 1‘ mnio 10 1} for each 1 <4 < n, ami a (length-
preser i=mq) honzommphawn goof (IO inte 1™ satisfying the jullumn(j condiiions:

(1) 1T(A) = T{A".

(2) Suppose (p, wae, mlva) | (g, 20, yilye). Then

(@) (p, mw, wlenlulen)) b3 (g, 20, pya)lulne)), aru?

(8) &f p = qo, h=2Fo, ve=c¢ and e =Ly Zn yeuch 2, in 1)
then foreach 1 < v <m, 1 <1< n, ¥{(Z,) = 1 and only if p(/l v 2
isin I

(8) Suppose (g, 2@z, Wiye) bi (&) 2o, ailes). Then theve evist y', ), 2, @
in (I)* mch that

(a) u(ys) = ¥is p(zi) =z fori = 1,2 and

(b) (g, 2122, u’ e ) 1‘11' (q Tz, &1 1&2 ).

(1) If A is delerministic, then so is A

Proor. Forl £ ¢ £ n, let Ay = (K¢, T, 6, ¢, F;) be an fza such that
T(A:) = By Without loss of generality, we muy assume that K; VK, = ¢ fori = j

’

and that X; N K = ¢ for euch 7. Let I' = I X K, X -+ X K,L and
Zd = (Zy, Gi, ", §n). Let g be the (length-preserving) h()luommphikm of (D)

into T* defined by w(Z, by, o, b))y = Z foreach (Z, £y, -, &) in T
For each 1 < ¢ < n, let ¢; be the mapping of 17 into {0, 1] defined by
Vi((Z, b, -+, 8)) = 1if §d, Z) isin F and 0 otherwise,

Let & be defined as follows: For each &;in K:, 1 <17 < u, and cach (d, ¢, e, ¥)
iné(q, a, Z}:

(5) iy = e let (d, ¢, e, e) beind{g a (Z, &, -, t));

(6 ify =21~ Z;, 7> 1l,eachZ;inT,let

(dy Q’, e) (:Z'L-) tl) Tty tn)(Z27 61(‘1 H Zl)) T a'i(é"l H Zl})
Ay, b, Zy e ey e 8t Dy Z5)))

be In 5'(q,a (Z, by o0y b))
Clearly A’ is dt,tenmmstm if A is. Condition (3) holds by eonstruction, Consider

*5 The definition of:—-z? in [5] assnmed that r > 0, while we now assume that » > 0. It is easily
seen that the proof of Lemma 3.1 of [5] is still valid under the condition that r > 0.
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condition (2). A straightforward induction on the number of moves of 4’ shows
that (2a) holds, and if p = qo, =20, vy = ¢ andywys = Z1--- Z», , where Z; =
(Yi,tn, oo ) for j =1, -+, m; then t;; = g; for 1 <4 < n and ¢, = 8
(qiy Zy -+ Zya) for 1 <k <mand1 <4 < n. Now from the definitions of y apg
4, (2) holds. Condition (1) follows from (2) and (3).

We need three additional concepts in order to prove closure of D-languages under
complementation. The first is now presented.

Definition. A one-way sa 4 = (K, 2, ¢, 8,1, g, Zy, I') is said to be continuing it
for each wuws in 278, wy # ¢ with (qo, wuws, Zo)) F* (¢, we, v); there exist
¢, wy, v such that (¢, ws, v) F (¢, we, ).

Thus a continuing one-way sa is a one-way sa in which each sequence of ID’s
from ¢ and Z, with a nonzero input in the last ID can be extended.

The next lemma shows that when dealing with deterministic one-way sa, there is
no loss of generality in assuming that the device is continuing.

Levma 4.3, For each deterministic one-way sa A, there exists a continuing one-way
sa B such that 7(4) = T(B).

Proor. Let A = (K, Z, ¢, 8, T, 8, go, Zy, F) be a one-way deterministic s,
Without loss of generality, it may be assumed that for each (¢, @) in K x
(2 U {4 81), 8(q a,Z0) = (d, q, e Zoy), with ¢ > 0. (For otherwise we could
consider the deterministic one-way sa (K U {p¢}, 2, ¢, §, T U {Ud}, 81, po, Us, F),
where py and Uy are new symbols, and 8y is defined as follows for each (g, a,Z) in
K X (2 U {¢, $}) X I 51(??0, a, UO) = <O7 qo , O) U0Z0)y 51(p0> a, Z) =
(0,90,0,2), &(q,a Uy = (0,q0, Uy), and 8,(q, a, Z) = 8(q, a, Z).) For each
qin K and Z in T, let § and Z be new symbols. Let Vy and 4 also be new symbols.
Let B = (Ky,2, ¢, 8 s, 85,9, Vo, Fs), where K = {§|qin K}, K, = KU
KUK, To=TU{Z|ZinT} U{Vy, Fy=FU{g| ¢ in I}, and 8, is defined as
follows (for each (¢, ¢, Z) in K X (2 U {¢, $}) X I'):

(i) 8s(h,a, Y) = (1,1,0,7) for each ¥ in Ty .
(i) (a) 3s(qo, ¢ Vo) = (0, qo, 0, VoZo).
(b) 63(7)1 b; VO) = (1; h: 0) VO) for each (p; b) = (qO; ¢) in (K U [-() X
z U, 8.

Let 8(q, a, Z2) = (d, ¢, ¢, y).

(1“) (8,) If Yy = Z; let BB(q) a, Z) = 5(Q7 a, Z)
(b) Ify = Z, let 8s(q, a, Z) = (1, h, 0, Z).

(iv) (a) Ify = Zand e < 0, let 65(q, @, Z) = (d, ¢, e,
(b) Ity = Zande = 1, let 85(q, @, Z) = (1, 4,0, Z
(¢) Ify # Zandy = oY, YVinT,letbos(q, a,Z) =
(d) Ity = ¢ let 8u(g, 0, Z) = (d, 7, e ¢).

(V> 68((77 a, Z) = 63((7’ a, Z) = (O) q, 07 Z)'

The intuitive idea for B is as follows. In a computation, B is to simulate A if 4
does not “block.” If A “blocks,” then B goes to the dead state 4. To do this, a new
leftmost stack symbol V, is introduced, and the rightmost symbol on the stack is
marked. Since 6(q, a, Zo) = (d, ¢, e, Zoy), with e > 0, the “blocking” of 4 occurs if
and only if the stack pointer of B is either () in the interior of the stack and the
instruetion in A is to write (this occurs at (iii-b)), or (8) at the rightmost symbol
on the stack and the instruction in A4 is to move the stack pointer right (this occurs
at (iv-b) ). The simulation of 4 by B is in (iii), (iv), and (v). In particular, (iv-d)

).
)

(d, ¢y e, 0Y).
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and (v) together perform an erase and a marking of the new rightmost symbol on
the stack.

Formally, suppose ¢wS$ is in ¢27S, Either

(1) there exists an infinite sequence of ID’s

(qo, %0, Yo) Fa -+ Fa(gi,wi,ve) Fa-o-,

with uo = ¢w$ and vo = Z4f; o1
(2) there cxists a finite sequence of ID’s

(qo, %o, ¥o) Fa - Fa (qe, we » e,

with o = ¢S, ~vo = Z¢|, and ux = ¢; or
(3) there exists a finite sequence of ID’s

(qo, o, Yo) Fa - Fa (ge s w, we),

withwe = ¢usS, 7vyo = OT, u # ¢, and for no ¢, u, v does (¢, ) Ui o) Falqu, ).
For each 4, 1i vi = aila; Yiforsome Viin T, let 7; = Voada! 7, 5 and if y; = a,¥ i
for some Y;in T, let 7; = Vo, Y. If (1) holds, then
(4) (qo, o, V(ﬁ) Fo(go,uo,m0) Foor Fo(qe,ui,m) Fo-or.
If (2) holds, then
(5) <q0:uU, VO‘D }‘B <Q(),’U,0 ) TO) }‘; e }—Iﬂ; (q/v y Uk aTk')'
Suppose that (3) holds. Then
(6) (qo, w0, Vel) Falqo,uo,m0) b5 Fa(qe,ue, ).
Sinceuy, % ¢, u, = agy, for some a; in T U {¢, $}. Now either v, = o WilarYs,
WeinT, and 6(qe , ar , Wi) = (di, Qet1 , € , Yr), with Wi 5# yi; ory, = V] and
8(qe,aY) = (d, qera, 1, 9). In the former case, 85(qx , ax, Wi) = (1, k, 0, W).
In the Iatter, ag(qk y Qe y Yk) = (1, h, 0, Y}c). Thus

<Qk y Uk, Tk) "B (h5 uk,: Tk) I": (h) €, Tk)’

Hence T(B) = T(A) and B is continuing.

We now introduce the second auxiliary concept used in proving the closure of
D-languages under complementation.

Definition. A one-waysa A = (K, Z,¢, 8, 1,8, qo, Zo, F) is said to be directed
if it is deterministic and the following holds for each wyaw, in ¢2*8$, a in = U {¢, $}
If (qo, wiaws, Zdf) +* (p, aws, al2’) and (p, g, @) ™ (g, a, 1), then (i) p # ¢
and (i) (p, a, 21) }* (g, 0, 21).

Intuitively, A is directed if there is no computation from ¢, and Z, containing
an ID (p, aw, , zlz") with the following property: There is a sequence of at least
two consecutive moves starting from (p, aw, , z]) which (i) preserves the stack at

each mowve, (ii) does not advance the input, and (iii) returns to the right end of the
stack. Less formally, 4 is directed if whenever the device goes left on the stack, it

cannot go right without advancing the input tape. The next result shows that every
deterministic one-way sa is equivalent to a directed sa.

Leyvuia 4.4, For each deterministic one-way sa A = (K, 2,¢,$, 1,8, ¢, Zo, F),
there exists a directed sa B such that T(A) = T(B). Furthermore, B is continuing if
A is continuing.
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Proor. For each p, ¢in K, and a in 2 U {4, $}, let

By Lemma, 4.1, each sct R,.(A4) is regular. By Lemma 4.2, there is a deterministic
one-way sa A" = (K, 2, ¢, 8, 1,8, g0, Z, F'), 8 mapping yp,. of I into {0, 1} for
each (p, g, 0) in K X K %X (2 U {¢ 8}), and a homomorphism u of (T7)* into T™
satisfying the conditions of the lemma. By (2) and (3) of Lemma 4.2,

F‘(R'Ma(AI) ) = qua(A )

for each (p, g, a) in K X K X (2 U {4, $}).

Let B = (KU (K, 2, ¢85 g, Zo, F) be the deterministic one way su in
which # is a new symbol and § is defined as follows (for each (¢, a, Z) in
Ex{(zU4 8 x1):

(iy 8(h, 0, 2) = (1, #, 0, Z). (Thus ks a “dead” slate.)

Gi) It 8'(q,a,2) = (d, ¢, e, ) and (a) e = L, or (8) d = 1, 0r () y £ Z;
then let 5(g, a, Z) = (d, ¢, ¢, y).*

(iii) Suppose 6'(q, a, 2) = (0,9, ¢, Z) and ¢ < 0.

(8) If¥epa(Z) = Yppal Z) = 1forsome pin K, thenlet§(g, a, Z) = (1, 4, 0, Z)."

(b) If there exists p in K such that Yepa(Z) = 1 and $ppa{Z) = 0 for each p’
in K, then lev 8(q, ¢, Z) = (0, p, 0, ).

{e) If neither (a) nor (b) holds, so that Y.w.(Z) = 0 for all » in K, then let
8g,0,2Z) = (0,4, 2).7

We first show that T{A4) = T(B). Let w be an arbitrary word in ¢2*$ and

(QQ,ND,‘T) }'A’ (Ql,ul,'h) I-A"“ FA’ (Qi,ui,’}fg‘) %_A'

a (possibly infinite) sequence of ID’s of A, with up = w and vo = Z¢]. To show that
T(A") = T(B), it suffices to prove that for each ¢ > 0:

(1) Either (a) w is in both T(A’) and in T(B), or (8) w is neither in T(A")
nor T(B), or () there exists 7 > 4 such that {qo, %o, va) Fa (45, U, ¥

Suppose T(A) # T(B). Let ¢ be the smallest integer for which (1) is false for
some w. (Since {1vy) is true for £ = 0, ¢ > 1.) Then

(go, waws ZUIT) Pj' (q, aws, fﬂzh?’)
and
(go, waws, Zd1) Fx (g awe, 2Zjz)),

where ¢ = qicy, w = wimey, ain T U {¢ 8, aws = uey, and vy = FYAL
ZinT.
Suppose 8y, @, 2) = (d, ¢, e, y), withe = 1, d = 1,0ry # Z. By (ii), 8(¢, 0, Z)
={d, ¢, ¢, y). Then {g, aws ,zZ%%) }a (g, u:,v<). This contradicts the ehoice of 4.
Suppose 8'(q, a, Z) = (0,4, ¢, Z), with ¢ < 0. Three cases arise.

6 Any instruction in which A’ moves right on the input or on the stack, or alters the stack can-
not prevent A’ from being directed. Hence it remains unchanged in B,

” In this case A’ has some £Z on the stack and (g, a, Z1) 1S (9, a, zZ]) and (p, a, 221 |5,
(p,a, 2Z1). Therefore A’ is in a nontrivial loop. In 8 we break the loop and go to the dead
state.

8 In A’, we have (g, o, z£1) };S, (p, @, xZ1) while (p, ¢, x21) H,s. (p', @, 21} is false for each p’.
Tn B, we send the device directy from state g to state p.

2 Since (g, a, 2Z1) ¥ (p, o, %1} is {alse for each p in K, we allow B to mimic 4"
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(a) Suppo% (q, a, 2Z7) Y (p, a, x/D O (p, a, 2Z}1) for some p. Then
(g, awz, 221"y Fho(p, aws, 1/1@ ) i (p, aww, 221") and w = waw, is not in
T(A"). By (iii- a) 5(q,a Z) = (1 h, 0, Z). Thus (q, a, xZix') Fy (h, € 2212).
Then (qo, W, ZN ]~B (h, ¢ 14}@ ), so that w is not in T(B), a contradiction.

(b) Suppose (¢, a, 2Z7) FAY (p, a, 2Z1) and, for all p” in K, (p, a, xZ]) Y
(p/, a, Z7) is false. By (lii-b), S(q, a, %) = (0,p,0, Z). Then

(g0, w, Zo1) Fh (g, aws , 2Z)) B (p, awr, #Z12")

= (¢, u;,v;) forsome j >z
and

(Qo y W, Z0/1) }_: ((I) aws , ‘/I"Zkﬂ,) i_B (pa aws , 1’Z1xl) l= (QJ y Uiy 'Yj)

This contradicts the choice of 7.

(¢) Suppose (q, a, 2Z]) }5 (p, q, .LZD is false for each p in K. By (iii ¢,
Hg,0,2) = §'(q,a,Z). Then (g, aws , 2Z%") Fa (qi,us,v:) and (¢, aws , xZk’) b
(q:, wi, vi). This again yields a contradiction of ¢. Thus (1) is true for each 7,
so that T(A") = T(B).

Now suppose that B is not directed. Then there exist a smallest integer k& > 0
and an integer » satisfying the following:

(2) r — k> 1

(3) There exist up = waws in ¢2*8, ue = aws, ain 2 U {¢, $}, such that

(go, %o, o) |“B Fa (qr, e, Vi)

and

(qk)a: Vk) }_AZ I—i <Qr,a, V’f‘)y

with vo = Z¢1, vi = 2212, ZinT,and v = v, = 2Z].

Suppose that §(qx, a, Z) = (d, qet1, ¢, y) and eithere = 1, d = 1, ory # Z.
Then (qx, @, vx) F% (qrs1, @, veqr) is false. Therefore (g, a, Z) is of type (iii).

Suppose one of the g;is #. Then g, = hand (gr_1,a, v,—1) Fz(qr,¢ v,), acontradic-
tion. Thus no ¢; is h. Thus §(qi, a, Z) is of type (iii-b) or (iii-¢).

At this point we note the following easily proved fact:

(4) Let w be in ¢2*8. If (qo, w, Zo'1) |3 (g, aws, wlyz), ainZ, (q, a, i)
(¢, a,7), and ¢’ 5 h; then (qo, w, Zo'1) +i (g, aws, yily2) and (g, @, wl)
(¢, a, v).

Now suppose that 5(gx , @, Z) is of type (iii-b). Then (gx , @, 221) +% (git1 , @, 2Z1)
and (qk+1 y &y :CZD f:s ((lr, Q, ’LZ) By (4)y (qo y Wiay, ZOAD iﬁj’ (qk , AWe :JcZTx'),
(gi,a,221) F¥ (qer , a,221), and (quys , @, 2Z]) F5° (¢r, @, 2Z1). This contradicts
8(qi, a, Z) being of type (iii-b).

Fmally, suppose that 8§(q., a, Zi) is of type (111 ¢). Since (g, @, xZ1)
(¢, a, 221), it follows from (4) that (qo, waw, Z) Fi (g, awe, 2Z1x) ‘md
(¢, a, Z1) +37 (¢, a, 2Z1). This contradicts §(gx, a, Z) being of type (iii-c).

Thus the integer & cannot exist and B is directed.

If 4 is continuing, then A, as constructed in Lemma 4.2, is continuing. It is then
easily seen that B is continuing.

We now present the third of the auxiliary concepts needed to prove the closure of
D-languages under complementation.

Definition. A one-way sa A = (K, Z,¢,$, 1,8, qo, Zo, F) is called loop-free if it

*8
B

*8
A’

ks
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is deterministic and, for each w in ¢Z78, there exists 1 , 72 in I'" and ¢ in K such that

(qoy w, Z 1) }—* (% € Z/ﬂ]/?)

Thus 4 is loop-free if it reads each word in ¢2™ ‘s, tlmt is, if it is continuing ang
does not operate forever on a given input tape.

Lemma 4.5. For every one-way sa A, there exisls a loop-free one-way sa B such
that T(4) = T(B).

Proor. et A = (K,Z, ¢, 8, 1,6, @, Zo, I"). By Lemmas 4.3 and 4.4, it may be
assumed that 4 is directed and continuing. Let B = (K U {h}, 2, ¢, 8, T, 85, 9,
Zy, '), where & is a new symbol and 8 is defined as follows (for cach (¢, ¢, Z) in
K X (2Uf4 8} XTI):

(1) 8xlh, a,Z) = (1, h,0, 7).

(ii) If 6(q, @, Z) = (d, ¢, e, y) and (a) d = 1, 0or (b) y = Z, or (¢) y =
let 85(q, a, Z) = 8(q, a, Z).

(iii) Suppose 8(q, a, Z) = (0, ¢, 0,9), y # Z, and y e

(a) If (q,a, Z]) I—~ (q' a, 1) for some q' let 8x(q, ¢, Z) = 8(q, a, Z).

(b) It (q,a,2)) 7 ( q 61 yilys) for some ¢, i1 ,andJ2 iletds(q,a,72) = 8(q,a,2).

(¢) If (¢, Z1) F* (¢, a, yilye) for some ¢, g1, and y» # ¢; let 65(q, @, Z) =
8(q, 0, Z).

(d) In all other cases, let 8z(q, a, Z) = (1, h, 0, Z).

Let ¢w$ be in ¢2%$. Since 4 is continuing, either:

(1) there exists a finite sequence of ID’s

(qo,uo,ve) Fa- Fal@e,ws,ve),

with wg = ¢w$, vo = Zo|, and ux = ¢; or
(2) there exists an infinite sequence of ID’s

(Q(),’LLQ,’Y()) }“A i_A(qi7ui:'yi) |—A'“7

with we = éw$ and vy = Zyl.

For each 7, ¢ # kin (1), let v; = oY/ and w: = awu., with ¥, in T and a;
in 2 U {4 $}.

Suppose (1) holds. Consider 7, ¢ = k. If 6(q;, a:;, Y;) satisfies (ii), then
8u(qi, ar, Yi) = 6(qs, a;, Yi). Suppose 8(q., a;, ¥;) satisfies (iii). Since w: =¢
there exists a smallest integer f(7) such that u;¢y = ui. Consider a;, 7 < j < f(7).
If there exists some j such that a;¥; = oy, then either (¢:, av, Y4) Fi (¢, ai, ]
for some ¢ or (¢, a:, Y1) Fi(q, ac,ly) for some ¢ and y 5 e Suppose there is no
j such that a;Y; = «;. Then (¢i, ai, Y) i (@, € wlye) for some y; and ys.
In any case, 6s(g:, as, Y:) = 8(q:, a;, V). Thus

(g0, %o, 7o) I‘B I“B (qr, ey ¥e)-

To prove that B satisfies the conclusion of the lemma, it thus suffices to show
that if (2) holds, then (go , %o, vo) F 3 (%, ¢ v) for some v. Since either 65(q, a, V) =
8(q, a, Y) or 83(q, a, Y) = (1, h, 0, V), it suffices to show that for some {,
(qe, we, ve) Fo (Quer, tepr, verr) 1s false, Assume (2) holds and there is no 7 such
that 6(¢: , a;, ¥;) satisfies (iii-d). Since uo, w1, - -+ is an infinite sequence, there
exists a-smallest integer s such that u; = u, for all¢ > s. Hence there is no 7 > ssuch
that 6(¢., a., ¥;) satisties (iii-b).
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Suppose there is some ¢ 2 ¢ such that 6{q; , a., Y¥,) satisfies (iii-c}. Then there
exigts © > ssuch that 8(¢,., ¢, ¥Yo) = (0, 00, —1, ¥,). Thus

(3) {0, s, Vo) Fa (Gn, e, Vo),
Assume there exists an integer, thus a smallest integer, I > r such that v, = ;.
Then (g, , %y ¥ 1) F&° (g, , & Yi). Since 4 is directed, (g, , ue , . Y/) |3
(g, us, w.Y,]), contradicting (3). Thus there is no integer © > » such that v; = ..
Hence .Y is an initial subword of «. for cach 2 > 7. Since there are ouly a finite
number of initial subwords of «, , there cxists a largest initial subword « of o, with
the following property:

{4} There exists an infinite sequence <(1), - -+, #(F), -+, r < (1) < £(2)
< --- such that & = aynYiuy , for each J.
Then for some m and n, m < 0, Gim = Giny - Hence (Giom , %s , e Yie]) Fa
(Gimy » sy @iom ¥ igmy]). From the fact that o is the largest initial subword of ¢, satis-
fying (4),

(Qitms » s » @ity Vi 1) FE° (Qion , s , @i Vi),

This contradicts A being dirceted since qum = ¢i - Henee there is no ¢ > s such
that 5(q., a., Y]) satisfies (iii-¢).

In view of the above, 8(q:, a,, V) satisfies (ii-b}, or (ii-¢), or (iii-a) for each
i > s. Now 8(q;, a., Y.} cannot satisfy (ii-b) for cvery 7 > s. For otherwise, 4 is
merely scanning the stack v, and a contradietion arises by the argument in the pre-
ceding paragraph. Let s(1) be the smallest integer greater than or equal to s such
that 8{q.w , ¢, Yey) satisfies (ile) or (iii-a). Either alternative resulés in some
Yoy, $(2) > s(1), for which | v.m| < | vem| Repeating the procedure, we get
s(4), 8(6), - - - , such that s(4) < s(6) < --- and|vsn| > | vew| > -+ . Thisis
a contradiction since | v, | is finite. We are thus forced to conclude that there exists
some 7 such that 8¢, a;, Y,) satisfies (iii-d), thereby proving the lemma,

Remark, Given (g, a, Z)}, we can construct, although not done here, one-way sa
€y, Cy, and €5 (depending on (q, @, Z)) such that (1) a is in T(Cy) if and only if
8(y, a, Z) satisfies (iii-a); (2) @ isin T(Cs) if and only if 8(¢, a, Z) satisfies (iii-b);
and (3) ¢ is in T(C,) if and only if 5(q, @, Z) satisfies (iii-c). Since languages are
recursive sets [5], the eonstruction of B in Lemma 4.5 is effective.

We are finally ready for the complementation result.

Turorew 4.1,  The complement of a D-language is a D-language.

Proor. Let I C £ be a D-language. By Lemuma 4.5, L = T(4) lor some loop-
freeone-waysa 4 = (K, 2, ¢, %, 0,6,q0, %0, F). Let B = (K, Z, ¢, 81,8 q, %,
K — F). Since A is loop-free and the device is deterministic, ohviously
T(B) = % — T(A).

Coroutary. For each D-languoge L and regular set R, BUL and B — L are
D-languages.

Proor. Since LUR = 2% — [(2* = I)N(E* -~ R)]and R — L = RN
(2% — L), the result follows from Corollary 2 to Theorem 2.1 and from Theorem 4.1.

Another important operation which preserves D-languages is the inverse gsm
mapping. ‘

Turorzv 4.2. Let L be a D-language and. 8 = (Kg, 2 U LR}, A, 85, N, po) @ gsmn
with h not in Z. Then L' = {w in =¥ | 8(wh) i L} is a D-langunge.
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Proor. Leb I, = T(A), where 4 = (K, A, ¢ 8 T, 8 a, %o, I"). Let
w = max (Mg @) [ (p @) in I X (2 U]
and let A, == U," oA Let 0 be a symbol not in K and 7 a symbol net in
KUK X (K U00) A Let 8= (Ks, 2 Uin], ¢8T 511,(10 Zy, Fs), where
Ky=KU{# UK X (KsU0}) XA, Fo=FxX{0} X, andl 6, is defined
as follows for (4, p, g b, 2y in T X Kg X K X A X Apr
(iy Wélg ¢ %) = (d, ¢, e y), then
‘\‘L) 58(‘1: ¢) ‘4) = (d: g,= & ,Tj) it d = 0.
(b) aul g, ¢'; Zy = (d, (({,, Fu E:)) e, y)ifd = L.
{ii) For ain Z, let
(a) &xl{g, 1, €}, 8, 2) = (1, (¢, 8s(p, aj, M p,a)), 0, %)
(iliy Ifaisin2U {8 and dlg, b, Z) = (d, ¢, ¢, ¥}, then
(a) §:(q, p, bx), a, Z) = (0, (g, p, ba), e y)itd = 0.
(b) 84((q, p, m» a,Z) = (0, (¢, p, a), e, y)itd = L
(iv) anllg p e}, §,2) = (0, (4, 0, AMp, A2}, 0, Z).
(v) Tord(g, b 2) = (d,d,¢ ),
(a) 85((g, 0, bz), 8 Z) = (0, (g’ 0, bx), e, y) if d = 0.
(b) 85({q, 0, bx), &, /) = (0,(¢,0,z),ey)ifd =1
(vi) Fordlq, %, /) = (d, ¢, e ),
65((% 07 E), M’: Z) = (d’ (Q’, 0: 5)) €, y)
(vii) Torallothersin K, ,ain2U{a, ¢ 8,and Zin T,
Su(s, 0, %) = (1,70, 7).
Slearly B is deterministic. Immtlvely, B imitates 4 on ¢ by (1), simulates 4 on
Ap, @) by (i) and (iii}, simulates A onA(p, ) by (iv) and {v), and imitates A on
$ by (vi). Formally, the construction does the following. By (i),

(Goy & Za) F5 (Lq, Puy €& wlyn)
if and only if
(qu, & Zol) F2 (g, & wlya).
By (ii),
((q, 2, €, & wlye) Fu (g, 8s(p, ¢}, M, 0)), & wilin).
By (iii),
(g p, ), a wlyn) +5 (e e, a,m )
if and only if
(g, 1, wilie) Fi (@' & milm).
By (iv) and (v),
((q, 2, ©, 8 wilya) Fa((q, O Mp, ), 8, plys)
i (g 0s€) 8, Ty
LA g, 0, ) 6 in ")
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if and only if

!

(g, Mp, RS, vl P (4,8 1)
Fa e e "),
Thewforay - - ax, k& 2 0, eache;in Z, wehave
(gos far -, Zol) W5 (a0, po, &), o oo @S, m)
Fe (g, p, w), @ @S, )

E
FE (g, D2, we), a5 - S, )

Fu (g, peywi), $, 7a)
Fr ((qepr, O, wiia), 8, yen)
Lo (i, 0, €), 8, yeee)
}g ((Qk+3 ’ 0, E‘), € 'Yk+s)

it and only if 8s(p:, @) = par and A(pa, @) = wep for cach 4, 0 <& <k,
M, 7)) = wira (50 that S{ay - - ah) = wq -+ wepa), and

(qo, faon -« went$, Zo]) H3 (m, wn 0 w0k, v,
(qey we - Wens$, i) H (Gt Wit * - Werd®, Y1) for 1 <8< k41,
and
(Quiz s § vies2) F3 (grsas & Yira)-
Hence
(o, ¢ar - a8, Za) T35 (20,0, ¢ ult)
if and only if
(qu, £8Cay -+ wh)$, Zo) Fi (g & ulv).
Thus 2 is in T(B) if and only if S(wh) is in T(A). Therefore
(B = {w n Z(S(wh) in L
CoroLrary 1. For each D-language L and each gsm S,
SNL) = {w|S(w) in L}

is o D-language.

Proor. Tet & = (K, 2, 4, 8, A, po). Let A be a symbol not in K. Let 8; be the
gsm (K, 2 U (A}, A, 81, M, po), where &i(p, k) = p and M{p, h) = eforeach pin K,
and 6; = 6 and A, = A otherwise. Then

SNIL) = jw in Z*[8w) in L}
= {w in Z¥|S(wh) in 1]
is a D-language by Theorem 4.2. ’

CoroLLaRy 2. Let w be o word on =¥ If L 4s a D-language, then tx [ in L] Us

a D-language.
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Proor. Let Iy = L — {w}. By Corollary 2 of Theorem 2.1, Lo is o D-language,
Let S = ({pe, pul, 2, 2, 5, h, pa) bo the gem where &(pe, 0} = 8, b) = ,m
Mpo, b) = wb, and XN(py , b) = b for cach b In . By Corollary 1 above, ST i;
a D-language. Then B, L) = S L) if L does not contain w, and B,,‘(.[,') =
S7(L) U {¢ it L does contain w, where 8,.(L) = {x |wzin L], Thus B‘,,QL).is )
D-language.

CoROLLARY 8. Let 1w be a word in 2% If L is a D-language, then {2 | xw in L} is
alsa a D-language.

Proor. Leth be a symbol not in 2. Let S be the gsm ({pof, 2 U 1A}, 2,8, X, o),
where 8(po, b) = 8(wo, ) = po, Mpo,b) = b, and A(pg, h) = wloreach bin 3,
Then {z | 2win L} = {2 in 2% | S(xh) in L} is a D-language by Theorem 4.2.

A number of operations which do not preserve D-languages are now presented.

TurorEM 4.3. The Jamily of D-languages is nol closed wader (1) wunion,
(ii) product, (iii) =, and (iv) homomorphism.™

Proor. Let Iy and L, be two D-lunguages such that Ia N Ly is not a D-language.
By Theorem 3.2, Ly and L exist. Let 2y be the alphabel over which £y and La ave
defined. Let g be a new symbol. Let £; = 2o¥ = Lyand Ly = 20" — Ly

As to (i), suppose Ly U Ly is a D-language. Then Ly 0 1 = ¥ — (L U L) is
a D-language, a contradiction.

Consider (ii). Clearly Ly U gls is a D-language. Also, {g, 41 is a D-language.
Suppose D-languages are closed under product. Then

L' =g, (L Ugls)
gQ(le U frg) U ng U gjLz

is u D-language. By the covollary to Theorem 2.5, L'Ng=" = gt U L) isa
D-language. By Corellary 2 of Theorem 4.2, Iy U Lyis a D-language, a couteadiction.

Consider (ii). Suppose D-languages are closed under «. Then L' Ng'zes” =
g (L U L) is a D-language. By Corollary 2 of Theorem 4.2, Ly U Lo isa D-langunge,
a contradiction.

Consider (iv). As noted above, In U gl is o D-language. Let # be the homo-
morphism defined by h(a) = «a for @ in Ey and h(g) = ¢ Then WL U gLy =
L1 U Ls is a D-language, & contradiction.

I

i

L

5. Decision Problems

We now congider the decidability of various questions. We use the fact that all con-
structions given so far can be made cffective. We also use the fact that a langunge
is recursive [3], Le., 1t 18 recursively solvable to determine if an arbitrary word 1s in
an arbitrary language. '

Turning to solvability results, we have

TeEOREM 5.1. Tt is recursively solvable to determine whether T{A) is empty for @i
arbitrary one-way sa A.

Proor. Let 4 be a one-way sa over 3. Let i be the homomorphism defined by
hia) = ¢ foreach o in =. By the corollary to Theorem 2.6, A(T(A)) isa hulgue}gf;.
Now T{A)} = ¢ ifand only if € is not in A(T{A}). Bince & T{AY) is a language, 1018
recursive. Thus it is decidable if eisin A(T(A) )

# (jy} implies nonclosure under gsm mappings.
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The next solvability result conecrns D-languages.

TurorEm 5.2, 11 48 recurstvely solvable lo determing for an arbitrary D-language
Loand o regrdar set B whether L = R,.

Proor, Since L is a D-language and R is ILOU.LIT ¥~ Land (2% — IYNR
are D-languages. Thus I = [L NV (2% - RNUE* — L) NR] isa language. Now
7, = R ifand only if I = ¢, which is solvable by Theorem 5.1,

Turning to unsolvability results, we have

Tugorem 5.3, Té ts recursively wnsolvable to determine whether an wbitrary
language 7s (@) regular, (&) conlext free, {c} a D-language.

Proor. (a)islkoownin that it is recursively unsolvable to determine whether an
arbitrary contexl-free language is regular 1],

Consider (b). Let £y (12 = ¢ and let 4, S 2" bo a language which is not con-
text Tree, suy {a'b’e’ [ > 1 For each context-frec language M < 5% let L{M) be
the langnage MZ, U !1 2. Since it is unsolvable to determine if an arbilrary
confext-free !(Lxlbuagz is =% [1], it suffices to show that

(1) L{M)is context free if md only if M = ul*.

Thus suppose that M = 2,*. Then L(M) = 2,"2," is regular, heuce context {rec.
Suppose 3 4 2,% and L{M ) is context free. Lot o he some word in 2, — 31, Then
LM N wE* = M, is context free. Thercfore M is context free, a contmdictiml.
Thus (1) 1s justified.

To prove (e), let M3 be 2 language which 18 not a D-language. BV the corollary

to Theorem 3.2, ’\[3 exists. Tor each context-free language M < £,%, lot H( M) be
the language M z o U2 My . Tt suffices to show that

(2) H(M) isa D-language if and only if M =

Suppose M = =% Then H(M) = 2,2,  is rngular, thus a D-language. Suppose
M > 3% and H(M) isa D-language. Let w be in 2, — M. Thon [T{M) NSy = wh; is
i ]‘)Alc\.n;,uzztg;e. By Corollary 2 of Theorem 4.2, M is a D-language, a contradiction.,
Thus (2) is justibed.

We close with the following open problem:

(%) Is it recursively solvable to determine for an arbitrary one-way sa 4 whether
T(A) i finite?

Given an arbitrary language . 2% and a fixed element e in Z, let 4 be the homo-
morphism defined by k(b) = a for each b in Z. Then L is finite if and onky if A( Ly is
finite. Lot M (L) = Init(h(L)). By the corollary to Theorem 2.7, M(L) is a
language. Clearly L is finite if and only if (L) is finite. M{L:) has the following
interesting properties: (i) It is regular; (ii) it is finite if and only U it does vot co-
incide with ¥, i.c., if and only if a® — M (L) = ¢. Thus (») can be reduced fo the
following plOb](‘nl

(#+) Ts it recursively solvable to determine whether 7'(A) is finite for an arbi-
trary onc-way sa A, over a oneletter alphabet, with the properey that
Init(T(A)) = T(A)?
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