Ackermann's Function

Presentation by Upasana Pujari 9-Nov-2004

Function Definition

Ackermann's function was defined in 1920s by German mathematician and logician Wilhelm Ackermann (1896-1962).

$$A(m,n)$$
, $m,n \in \mathbb{N}$ such that,

$$A(0, n) = n + 1,$$
 $n \ge 0;$
 $A(m,0) = A(m-1, 1),$ $m > 0;$
 $A(m,n) = A(m-1, A(m, n-1)),$ $m, n > 0;$

Example - 1

```
A (1, 2) = A (0, A (1, 1))
= A (0, A (0, A (1, 0)))
= A (0, A (0, A (0, 1)))
= A (0, A (0, 2))
= A (0, 3)
= 4
```

Simple addition and subtraction!!

Example - 2

```
A(2, 2) = A(1, A(2, 1))
        = A (1, A (1, A (2, 0)))
        = A (1, A (1, A (1, 1)))
        = A (1, A (1, A (0, A (1, 0))))
        = A (1, A (1, A (0, A (0, 1))))
        = A (1, A (1, A (0, 2)))
        = A (1, A (1, 3))
        = A (1, A (0, A (1, 2)))
        = A (1, A (0, A (0, A (1, 1))))
        = A (1, A (0, A (0, A (0, A (1, 0)))))
        = A (1, A (0, A (0, A (0, A (0, 1)))))
        = A (1, A (0, A (0, A (0, 2))))
        = A (1, A (0, A (0, 3)))
        = A (1, A (0, 4))
```

```
= A (1, 5)
= A (0, A (1, 4))
= A (0, A (0, A (1, 3)))
= A (0, A (0, A (0, A (1, 2))))
= A (0, A (0, A (0, A (0, A (1, 1)))))
= A (0, A(0, A(0, A(0, A(0, A(1, 0))))))
= A (0, A(0, A(0, A(0, A(0, A(0, 1))))))
= A (0, A (0, A (0, A (0, A (0, 2)))))
= A (0, A (0, A (0, A (0, 3))))
= A (0, A (0, A (0, 4)))
= A (0, A (0, 5))
= A (0, 6)
= 7
```

Ackermann's Function

- It is a well defined total function.
- Computable but not primitive recursive.
- Grows faster than any primitive recursive function.
- It is µ-recursive.

A(m,n)	n = 0	n = 1	n = 2	n = 3	n = 4
m = 0	1	2	3	4	5
m = 1	2	3	4	5	6
m = 2	3	5	7	9	11
m = 3	5	13	29	61	125
m = 4	13	65533	265533 - 3	$A(3, 2^{65533} - 3)$	A(3, A(4,3))
m = 5	65533	A(4, 65533)	A(4, A(5,1))	A(4, A(5,2))	A(4, A(5,3))
m = 6	A(4,65533)	A(5, A(5,1))	A(5, A(6,1)	A(5, A(6,2)	A(5, A(6,3)

5

Equivalent Definition

A(0, n) = n + 1
A(1, n) = 2 + (n + 3) - 3
A(2, n) = 2 x (n + 3) - 3
A(3, n) =
$$2^{n+3} - 3$$

A(4, n) = $2^{2^{2\cdots 2}} - 3$
(n + 3 terms)

. . .

Terms of the form $2^{2^{2...2}}$ are known as power towers.

Arrow Notation

- Invented by Knuth (1976)
- Used to represent large numbers such as the power towers and Ackermann numbers.

$$m \uparrow n = m^n$$

 $m \uparrow \uparrow n = \underline{m} \uparrow ... \uparrow \underline{m} = \underline{m}^{\underline{m} ... \underline{m}}$

n

m

Sample Implementation

Recursive version

```
function ack (m, n)
  if m = 0
    return n+1
else if m > 0 and n = 0
    return ack (m-1, 1)
else if m > 0 and n > 0
    return ack (m-1, ack (m, n-1))
```

Partially iterative version

```
function ack (m, n)
  while m ≠ 0
    if n = 0
        n := 1
    else
        n:= ack (m, n-1)
    m := m - 1
  return n + 1
```

Applications

- In Computational complexity of some algorithms
 - Union-find algorithm
 - Chazelle's algorithm for minimum spanning tree
- In theory of recursive functions
- As a benchmark of a compiler's ability to optimize recursion
- In specifying huge dimensions in certain theories such as Ramsey Theory

Benchmarking

Ackermann's Function (N = 8)

