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Introduction

⇒ The regression is supervised
learning. We consider an
example, where we would like to
build a model that approximates
the relationship f between the
number of years of experience in
software industry x and
corresponding annual income y.

y = f (x) + ε (1)

where x = (x1, x2, ..., xn) is
(input) years in software
industry and y = (y1, y2, ..., yn)
is predicted (output) annual
income, f is function describing
relationship between x and y.

⇒ Machine learns f given x, y.
The ε is random error term
either positive or negative with
mean zero, and represents
irreducible error in the model,
which is the theoretical limit
around the performance of the
algorithm due to inherent noise.

⇒ Two tasks of supervised
learning are: 1) Regression,
which predicts a continuous
numerical value, and 2) to
assign a label, for example, to
predict whether a given picture
is of a “cat” or “dog?”
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Regression Model

⇒ In regression, data is split
into training data set and test
data set. Goal is: to learn linear
model using ordinary least
squares regression that predicts
a new y given a previously
unseen x , with as little error as
possible.

⇒ It is a parametric method, to
find a function that predicts ŷ
for given specific x :

ŷ = β0 + β1 ∗ x + ε, (2)

here β0 is y -intercept (point
where line cuts y axis), β1 =

slope of line, i.e., how much it
increases or decreases by one
year of experience.

⇒ Goal: learn model parameters
β0 and β1 that minimizes error.

⇒ To find best value of
parameters:

1 Define a cost function (or
“loss function”), that
measures how inaccurate
the predictions are?

2 Find the parameters that
minimize cost, i.e., make
this as accurate as possible.
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Regression Model

⇒ In 2D it is a line of best fit,
in 3D it is plane, ....

⇒ Mathematically, we look at
difference between each real
data point (y) and this model’s
prediction (ŷ).

⇒ Differences are squared to
avoid negative numbers, and we
penalize large differences. At
end, all squares are summed up
and averaged: a measure of how
well our data fits a line. For n
number of observations:

Cost =

∑n
1((β1xi + β0)− yi ))

2

2 ∗ n
(3)

“Cost” should be minimum
possible. Using 2 ∗ n, instead of
n makes the mathematics
workout more cleanly when
taking derivative to minimize
loss (page no. 7). The random
error term ε is not accounted
for in equation (3), its mean
value is zero.
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Regression Model

⇒ Example. Let an attribute vector x = [1, 1, 1, 2, ..., 10, 10] is
years of experience of software developers, and vector
y = [26, 33, 40, 30, ..., 144, 160] is corresponding annual income in
thousands of INR. The values are plotted in Fig-1 below, as
“Experience vs Salary.”

⇒ Linear regression curve is obtained in Fig. (next slide) for
experience vs salary data shown in Fig. 1, using cost equ. (3). The
β0 and β1 are chosen such that cost is minimum, for all input data
of experience vs salary.
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Regression Model

Fig.2 (Experience vs Salary Plot Regression).

⇒ Values of β0, β1 are substituted in equation (2) to get linear
relation, which is induced classifier, and can classify new data in
similar way we did in liner classifier in equation (4).

2.5− 0.8x1 − x2 = 0 (4)

For this simple problem we can compute a closed form solution
using calculus to find optimal β parameters that minimize cost
function. As cost function grows in complexity, finding a closed
form calculus is difficult (requires different method).
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Regression Model

Goal of gradient descent: Find
minimum of regression model’s
loss function through iteration,
to achieve better approximation.

⇒ It is like walking through a
valley with a blindfold on. Goal:
find bottom of a valley.
Approach: to find steepest slope
of ground, and move and repeat
this.

⇒ Bottom is reached, if we end
up at the same elevation. (it is
opposite to hill-climbing).

Cost function:

Cost =

∑n
1((β1xi + β0)− yi ))

2

2 ∗ n
(5)

Objective: Minimize this cost
function (loss function).

⇒ Let f (β0, β1) = z . To begin
process, initial guess is required
for β0 and β1, that minimize
the function.

⇒ Next, partial derivatives is to
be computed w.r.t each beta
parameter: [dz/dβ0, dz/dβ1]

1.

1Partial derivative: how much it is increased or decreased if we increase β0

or β1 by a very small amount.
Prof K R Chowdhary Machine Learning 7/ 11



Regression Model...

⇒ It means, how much would
increasing your estimate of
annual increase, assuming zero
experience (β0), increases the
cost of the model? (You want to
go to opposite direction so that
you end up walking downhill
and minimizing the cost).

⇒ Similarly, if you increase your
estimate of how much each
incremental year of experience
effects the income (β1), how
much does this increase the loss
z . If the partial derivative
dz/dβ1 is a negative number,

then increasing β1 is good
because it will reduce the total
cost. If it is positive number,
you want to increase β1. If zero,
do not change β1 because it
means you have reached the
optimum.

⇒ Repeat this until you reach
to bottom, i.e., the algorithm
has converged and loss has been
minimized. (There are many
more tricks in accomplishing
this, but this largely we do for
finding the optimal parameters
for this method).

Prof K R Chowdhary Machine Learning 8/ 11



Overfitting and Underfitting

⇒ Overfitting is a common
problem in ML where “learning
function perfectly explains the
training data through which the
model has learned, but the
model does not generalize well
to unseen test data.”

⇒ Overfitting happens when
model over-learns from training
data to the point that it starts
picking up idiosyncrasies2 that
are not representative of pattens
in the real-world. This makes
the model increasingly complex.

⇒ Underftting is just the

reverse: model is not complex
enough to capture underlying
trend in data.

⇒ As model increases in
complexity and becomes more
flexible, its bias decreases. By
this, model does a better job of
explaining the training data,
but, variance increases. Due to
which model does not generalize
well.

⇒ Hence, for an ideal model,
there is need of low bias and
low variance.

2an unusual characteristic
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Overfitting and Underfitting ...

⇒ Effects of bias and variance
on model accuracy are shown in
Fig. 1, for solar cell exposed to
sunlight vs. current produced in
milli-amps. High bias causes
underfit, high variance overfit
and both low is just a fit.

⇒ Overfitting can be limited:
1). Using more training data:
due to this, it is harder to overfit
data, by learning too much from
any single trg. example. 2).
Using regularization: Penalty
added to cost function helps in
building a model that assigns
too much explanatory power to

any one feature or allows too
many features to be considered.

Figure 1: Effect of bias and
variance on a model’s accuracy
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Overfitting and Underfitting ...

cost =

∑n
i=1((β1xi + β0)− yi )

2

2 ∗ n
+ λ(β2

0 + β2
1) (6)

⇒ 1st term in (6) is normal cost
function, 2nd is regularization:
adds penalty for large beta
coefficients that give too much
explanatory power to any
specific feature.

⇒ Due to these terms, cost
function balances between two
priorities: explaining training
data vs. preventing that
explanation from becoming
overly specific.

⇒ λ coefficient of regularization
term is a hyper-parameter. In a

general setting (of model), λ
can be increased or decreased
(tuned) to improve performance.

⇒ Higher value of λ will be
more aggressive to penalize
large β coefficients which could
result to potential overfitting.

⇒ For best value of λ, use
cross-validation: it holds out a
portion of training data during
training, and then seeing how
well model explains portion of
data that has been held out.
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