Machine Learning (Decision Trees)

Prof K R Chowdhary

CSE Dept., MBM University

December 27, 2024

Introduction to Decision Trees

 \Rightarrow The basic idea of data classification: given a training data with known labels or classes (e.g., as shown in Table 1), we would like to learn a model, so that it can be used to predict future data with unknown labels [1].

Record	Employment	Age	Salary	Group
1	Self	30	30K	С
2	Industry	35	40K	С
3	Self	35	60K	Α
4	Self	30	70K	Α
5	Industry	35	40K	С
6	Academia	50	70K	D
7	Self	45	60K	D
8	Academia	30	70K	В
9	Industry	35	60K	B

Table 1: Sample Training database

 \Rightarrow As next step, assign each person in mailing list to one of three groups: *A*, *B*, *C*.

⇒ Let the training data with historical information has attributes: $\langle Salary, age,$ *employment, group* \rangle . Goal is to build a model that takes as input the *predictor attributes* and outputs a value for the *dependent attribute.*

 \Rightarrow When the dependent attribute is numerical value, the

problem is called *regression*, otherwise it is a *classification* problem.

 \Rightarrow In our present discussion, dependent attribute (also called *class labels*) are A, B, C, hence, it is classification problem.

 \Rightarrow Let the Table 1 is a sample training database with three predictor attributes: salary, age, and employment, and group as dependent attribute.

Th classification model Decision trees are popular due to the following reasons:

 \Rightarrow Their representation is intuitive, which makes classification model easy to understand,

 \Rightarrow An analyst does not need to supply any input parameter for

construction of decision trees,

 \Rightarrow The accuracy of prediction of decision trees is is better than other classification methods,

 \Rightarrow It is possible to construct decision trees from very large training databases using algorithms that are scalable and fast.

 \Rightarrow Decision-trees are tree structures whose leaves are classifications and their branches are conjunctions of features that lead to classifications.

 \Rightarrow Their significance is because many data mining methods generate decision trees, which are learned by problem solution methods.

 \Rightarrow One approach to learn a decision tree is to split the example set into subsets, based on the value test of some attribute. This is repeated recursively on the subsets, with each split value becoming a sub-tree root.

 \Rightarrow Splitting stops when subset becomes so small that further splitting is not possible, i.e., the subset example contains only one classification.

 \Rightarrow A split is considered best if it produces minimum number of classification in the subset, i.e., subsequent learning generates smaller sub-trees, which will require less further splitting, in effect reducing the number of steps for solution of the problem.

 \Rightarrow A decision tree algorithm comprises two steps: *tree building*, and *tree pruning*.

 \Rightarrow In the first step, most decision-tree is grown top-down in a greedy way. Starting with the root node, the database is examined by a method, called, "split selection", it select split condition at each node. Then, database is partitioned and procedure applied recursively.

 \Rightarrow In pruning stage, tree

constructed in previous phase is pruned to control its size. The pruning methods select the tree in a way that minimizes prediction errors.

 \Rightarrow The algorithm 1 is a recursive algorithm that shows a sample tree building phase, and *n* is the node where tree is to be split. At the output, the algorithm provides decision-tree for data partition *D*, and node new node value *n* which is root of the decision tree.

Decision-tree Algorithm

Algorithm 1 Sample Code for building a Decision-Tree

- 1: % Input: Data-partition D, Node n, split selection criteria P
- 2: % Output: Decision tree for D, with it root as n
- 3: Build-Tree(n, D, P)
- 4: Apply P to D, and find splitting criteria for node n
- 5: if n splits then
- 6: Create its child nodes n_1 , n_2
- 7: partition D into D_1 , D_2 using split criteria
- 8: Build-Tree (n_1, D_1, P)
- 9: Build-tree (n_2, D_2, P)

10: end if

If the training database does not fit into memory, we need a scalable data access method. Many scalable algorithms have built-in feature, which ensures that only a small set of statistics, are sufficient to implement the split selection.

Decision-tree Algorithm....

 \Rightarrow The Fig. shows here decision tree for training dataset shown in Table 1. The splitting attributes are: salary, age, and employment, and the class labels are Groups A, B, C, D.

⇒ Every edge that originates from an internal node is labeled with a *splitting predicate*, which involves only the node's splitting attribute. Splitting predicate in this decision tree are: salary $\leq 50K$, > 50K, age ≤ 40 , > 40, *Self*, and "*Academia*, *Industry*".

 \Rightarrow Property *Splitting predicate*: Any record will take a unique path from the root to exactly one leaf node, which is class label of that record. Combined information at a node about splitting attributes and splitting predicates is *splitting criterion*.

Chowdhary, K.R. (2020). Machine Learning. In: Fundamentals of Artificial Intelligence. Springer, New Delhi. https://doi.org/10.1007/978-81-322-3972-7_13 pp. 393-396.

