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Pattern representation and feature extraction

⇒ A better quality pattern
representation results to simple
and easily understood clustering.
E.g., In Cartesian coordinates,
many clustering algorithms may
fragment data into two or more
clusters; In polar coordinates,
radius coordinate causes tight
clustering and a one-cluster
solution can be easily obtained.

⇒ A pattern can be for a
physical object or an abstract
notion. Physical: a chair, table,
book, house, abstract: a style of
writing, attitude, belief. Both
can be represented as

multidimensional vectors.
Features of pattern can be
quantitative /qualitative:
weight, color, (black, 5) is black
object with 5 units of weight, or
degree of blackness.

⇒ Other representations are:
tree structures, a parent node
represents a generalization of its
child nodes. E.g., a parent node
“4-wheeler”: generalization of
“cars,” “jeep,” “tractor,”. The
node “cars” could be a
generalization of car make,
“Hundai,” “Tata,”, etc.
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Clustering Algorithms

⇒ In clustering, where it lacks
class labels, feature selection is
an ad hoc, but a necessity. As it
lacks class labels, there can only
be a trial-and-error process for
selection of features. The
resultant patterns are clustered,
and output is evaluated using a
validity index. Popular feature
extraction processes: principal
components analysis (PCA), it
does not depend on labeled
data. Patterns having smaller
number of features are

beneficial [1].

⇒ For clustering: first
requirement is to find out
similarities, and more similar
patterns are clubbed together.

⇒ Dissimilarity between two
patterns is the feature space
using the distance measure. The
popular metric for continuous
features is Euclidean distance:

d2(xi , xj) =
( d∑
k=1

(xi ,k − xj ,k)
2
)1/2

=∥ xi − xj ∥2 . (1)
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Clustering Algorithms

⇒ The equation (1) is a special
case of the Minkowski’s metric,
where p was taken as 2,
expressed by,

dp(xi , xj) = (
d∑

k=1

(xi ,k − xj ,k)
p)1/p

=∥ xi − xj ∥p . (2)

where d2 Stands for two
dimensions, d is number of
dimensions (=no. of attributes).

⇒ Approach based on Euclidean
distance, the method is used to
evaluate proximity of objects in

2D/3D spaces.

⇒ Set of 2D data points
(Table 1) and a data point,
x = (2.5, 2.9) as a query, rank
these database points based on
similarity with query.

Table 1: 2D data

A1 A2

x1 1.9 1.7
x2 2.1 2.1
x3 2.6 3.0
x4 2.2 2.5
x5 1.8 2.0
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Clustering Algorithms

⇒ Using equation (1), we
compute the Euclidean distance
for the two dimensional data
points x1, . . . , x5 with respect
to the query x = (2.5, 2.9). The
result are shown in Table 2.

Table 2: Euclidean Distances

Data
pt.

Euclid. dist.
with x

x1 1.341
x2 0.894
x3 0.141
x4 0.500
x5 1.140

The distance matrix shows that
query (2.5, 2.9) is nearest to x3,
having distance 0.141.

⇒ Nearest Neighbor
Clustering (NN): An iterative
algorithm assigns each
unlabeled pattern to the cluster
of its nearest labeled neighbor
pattern. Condition is: distance
to that nearest pattern is below
threshold.

⇒ This process continues until
all the input patterns are
labeled.
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Clustering Algorithms: Nearest Neighbor Clustering (NN)

⇒ To grow the clusters from
NN, a concept: mutual neighbor
distance, (MNd), is used.

MNd(xi , xj) = Cn(xj , xi )+

Cn(xi , xj).

where, xi , xj , are patterns,
Cn(xi , xj) is count of NN of xj
w.r.t xi . Fig. 1(a)NN of
pattern P is Q, and Q’s NN is
P. Also, Cn(P,Q) = Cn(Q,P)
= 1, So, MNd(P,Q) = 2. If
Cn(Q,R) = 1 but Cn(R,Q) =
2, then MNd(Q,R) = Cn(Q,R)
+ Cn(R,Q) = 3.

⇒ Fig. 1(b) we get from

figure 1(a) by adding three more
patterns S ,T ,U. Now,
MNd(Q,R) = 3, but
MNd(P,Q) =5. Note:
MNd(P,Q) has increased from
2 to 5 due to three more
patterns S ,T ,U, however, P
and Q remains at same place.

Figure 1: NN clustering: (a) P, Q
are more similar than P, R, (b) Q,
R are more similar than Q, P
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Clustering Algorithms: Nearest Neighbor Clustering (NN)..

⇒ A general case of NN algorithm is k-nearest neighbor algorithm.
Fig. 2 illustrates for k = 1, 2, and 3-nearest neighbor graphs.

Figure 2: Construction steps of k-nearest neighbour graph using original
data: (a) Original data, (b) 1- (c) 2- (d) 3-nearest neighbor graphs

Many advantages of k-NN
(clusters). 1. far apart data
items are completely
disconnected, and 2. since data

items are connected with nearer
items, weights (on edges) are
indicator of population density.
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Partitional Algorithms

⇒ It first obtains a single
partition of the data, with no
structure. In next step, clusters
are produced by optimization of
a criterion function defined
locally (over a subset of the
patterns).

⇒ “Squared error function”
approach is most intuitive
concept for partitional
clustering, it ideally suited for
compact and isolated clusters.
For an input set of X patterns,
the “squared error” for

clustering C, consisting K
clusters (C1, ...,CK ), expressed
as:

e2(X , C) =
K∑
j=1

mj∑
i=1

∥ x
(j)
i −cj ∥2 .

(3)
⇒ In the equation (3), cj is
centroid of the j th cluster in
total K clusters formed, mj is
number of patterns in j th

cluster, and x
(j)
i is the i th

pattern in j th cluster.
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Squared Error Clustering Algorithm

Algorithm 1 Squared Error Clustering Algorithm

1: Select an initial partition X of patterns, with a fixed k number
of clusters, and cluster centers

2: repeat
3: for each pattern xi ∈ X do
4: Find centroid cj (of cluster Cj) having minimum distance

with pattern xi
5: Cj = Cj ∪ {xi}
6: Compute the new centroids (cluster centers) of all the clus-

ters
7: end for
8: Merge and split clusters based on some heuristic criterion
9: until convergence is achieved

10: end
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K-Means Clustering

The steps of squared error
clustering algorithm are listed in
algorithm 1. The repetition in
the repeat ... until loop
continues until the convergence
is achieved, i.e., the cluster
membership is stable.

⇒ The k-means tries to find k
number of clusters, the count is
specified by the user. These are
represented by their centroids.
It is simplest and most

commonly used algorithm that
uses squared error criterion.

⇒ The k-means algorithm
starts with a random initial
partition and keeps reassigning
the patterns to clusters based
on the similarity between the
pattern and the cluster centers
(centroid distances) until a
convergence condition is
reached.
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K-Means Clustering..

⇒ The k-means is a partitional
clustering technique that tries
to find a k number of clusters
(count is given by the user).
These are represented by their
centroids. It is simplest and
commonly used algorithm that
uses squared error criterion.

⇒ k-means algorithm starts
with a random initial partition
and keeps reassigning the
patterns to clusters based on the
similarity between the pattern
and the cluster centers (centroid
distances) until a convergence

condition is reached.

⇒ In clustering process, there is
no reassignment of any pattern
from one cluster to another, this
gives gives it a property of linear
time complexity.

⇒ Advantages of k-means: 1).
It is easy to implement, 2. Its
time complexity is O(n), where
n is total number of patterns.
Disadvantage: sensitive to
selection of the initial partition
– if not properly selected, it may
converge to a local minima of
the criterion function value.
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K-Means Clustering: Example

⇒ Using the k-means approach
to perform clustering.

Figure 3: The k-means clustering is
sensitive to initial partition

⇒ Fig. shows 2D patterns
P,Q,R, S ,T ,U,V . Process is

started with initial patterns P,
Q, R. Around these, three
(given k = 3) clusters are to be
constructed. We we end up
with partition
{{P}, {Q,R}, {S ,T ,U,V }},
where three clusters are ellipses.

⇒ The squared error criterion
value turns out to be very large
for this partition (see
eqation (3)). This will happen,
for the centroid vs. the patterns
in the largest ellipse.
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K-Means Clustering..

⇒ Hence, we construct a better
partition {{P,Q,R},
{S ,T}, {U,V }}, where clusters
are shown by rectangles. This
grouping results to the global
minimum value of the squared
error criterion function, for
clustering comprising of k = 3

clusters.

⇒ The correct three-cluster
solution is obtained by choosing,
for example, P, S , and U as the
initial cluster means, which will
form the partition as
{{P,Q,R}, {S ,T}, {U,V }}.
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