Machine Learning (Clustering Algorithms)

Prof K R Chowdhary

CSE Dept., MBM University

December 29, 2024

Pattern representation and feature extraction

⇒ A better quality pattern representation results to simple and easily understood clustering. E.g., In Cartesian coordinates, many clustering algorithms may fragment data into two or more clusters; In polar coordinates, radius coordinate causes tight clustering and a one-cluster solution can be easily obtained.

 \Rightarrow A pattern can be for a physical object or an abstract notion. Physical: a chair, table, book, house, abstract: a style of writing, attitude, belief. Both can be represented as multidimensional vectors. Features of pattern can be quantitative /qualitative: weight, color, (*black*, 5) is black object with 5 units of weight, or degree of blackness.

⇒ Other representations are: tree structures, a parent node represents a generalization of its child nodes. E.g., a parent node "4-wheeler": *generalization* of "cars," "jeep," "tractor,". The node "cars" could be a generalization of car make, "Hundai," "Tata,", etc.

 \Rightarrow In clustering, where it lacks class labels. feature selection is an ad hoc, but a necessity. As it lacks class labels, there can only be a trial-and-error process for selection of features. The resultant patterns are clustered, and output is evaluated using a validity index. Popular feature extraction processes: principal components analysis (PCA), it does not depend on labeled data. Patterns having smaller number of features are

beneficial [1].

 \Rightarrow For clustering: first requirement is to find out similarities, and more similar patterns are clubbed together.

 \Rightarrow Dissimilarity between two patterns is the feature space using the distance measure. The popular metric for continuous features is *Euclidean distance*:

$$d_{2}(\mathbf{x}_{i}, \mathbf{x}_{j}) = \left(\sum_{k=1}^{d} (x_{i,k} - x_{j,k})^{2}\right)^{1/2}$$

= $\|\mathbf{x}_{i} - \mathbf{x}_{j}\|_{2}$. (1)

Clustering Algorithms

 \Rightarrow The equation (1) is a special case of the *Minkowski's metric*, where *p* was taken as 2, expressed by,

$$d_{p}(\mathbf{x}_{i}, \mathbf{x}_{j}) = (\sum_{k=1}^{d} (x_{i,k} - x_{j,k})^{p})^{1/p}$$
$$= \parallel \mathbf{x}_{i} - \mathbf{x}_{j} \parallel_{p} .$$
(2)

where d_2 Stands for two dimensions, d is number of dimensions (=no. of attributes). \Rightarrow Approach based on Euclidean distance, the method is used to evaluate proximity of objects in

2D/3D spaces.

 \Rightarrow Set of 2D data points (Table 1) and a data point, x = (2.5, 2.9) as a query, rank these database points based on similarity with query.

	A_1	A_2	
<i>x</i> ₁	1.9	1.7	
<i>x</i> ₂	2.1	2.1	
<i>x</i> 3	2.6	3.0	
<i>x</i> 4	2.2	2.5	22
<i>X</i> 5	1.8	2.0	

4/13

Clustering Algorithms

⇒ Using equation (1), we compute the Euclidean distance for the two dimensional data points x_1, \ldots, x_5 with respect to the query x = (2.5, 2.9). The result are shown in Table 2.

Table 2: Euclidean Distances

Data	Euclid. dist.
pt.	with x
<i>x</i> ₁	1.341
<i>x</i> ₂	0.894
<i>x</i> 3	0.141
<i>x</i> ₄	0.500
<i>X</i> 5	1.140

The distance matrix shows that query (2.5, 2.9) is nearest to x_3 , having distance 0.141.

 $\Rightarrow Nearest Neighbor$ Clustering (NN): An iterativealgorithm assigns eachunlabeled pattern to the clusterof its nearest labeled neighborpattern. Condition is: distanceto that nearest pattern is belowthreshold.

 \Rightarrow This process continues until all the input patterns are labeled.

Clustering Algorithms: Nearest Neighbor Clustering (NN)

 \Rightarrow To grow the clusters from NN, a concept: *mutual neighbor distance*, (*MN*_d), is used.

$$MN_d(\mathbf{x}_i, \mathbf{x}_j) = C_n(\mathbf{x}_j, \mathbf{x}_i) + C_n(\mathbf{x}_i, \mathbf{x}_j).$$

where, $\mathbf{x}_i, \mathbf{x}_j$, are patterns, $C_n(\mathbf{x}_i, \mathbf{x}_i)$ is count of NN of \mathbf{x}_i w.r.t \mathbf{x}_i . Fig. 1(a)NN of pattern P is Q, and Q's NN is P. Also, $C_n(P,Q) = C_n(Q,P)$ = 1, So, $MN_d(P, Q) = 2$. If $C_n(Q,R) = 1$ but $C_n(R,Q) =$ 2, then $MN_d(Q, R) = C_n(Q, R)$ $+ C_n(R,Q) = 3.$ \Rightarrow Fig. 1(b) we get from

figure 1(a) by adding three more patterns S, T, U. Now, $MN_d(Q, R) = 3$, but $MN_d(P, Q) = 5$. Note: $MN_d(P, Q)$ has increased from 2 to 5 due to three more patterns S, T, U, however, Pand Q remains at same place.

Figure 1: NN clustering: (a) P, Q are more similar than P, R, (b) Q R are more similar than Q, P

Prof K R Chowdhary Machine Learning

6/13

Clustering Algorithms: Nearest Neighbor Clustering (NN)..

 \Rightarrow A general case of NN algorithm is *k*-nearest neighbor algorithm. Fig. 2 illustrates for k = 1, 2, and 3-nearest neighbor graphs.

Figure 2: Construction steps of k-nearest neighbour graph using original data: (a) Original data, (b) 1- (c) 2- (d) 3-nearest neighbor graphs

Many advantages of k-NN (clusters). 1. far apart data items are completely disconnected, and 2. since data

items are connected with nearer items, weights (on edges) are indicator of population density.

 \Rightarrow It first obtains a single partition of the data, with no structure. In next step, clusters are produced by optimization of a *criterion function* defined locally (over a subset of the patterns).

⇒ "Squared error function" approach is most intuitive concept for partitional clustering, it ideally suited for compact and isolated clusters. For an input set of \mathcal{X} patterns, the "squared error" for clustering C, consisting Kclusters $(C_1, ..., C_K)$, expressed as:

$$e^{2}(\mathcal{X}, \mathcal{C}) = \sum_{j=1}^{K} \sum_{i=1}^{m_{j}} \parallel \mathbf{x}_{i}^{(j)} - \mathbf{c}_{j} \parallel^{2}$$
(3)

⇒ In the equation (3), \mathbf{c}_j is centroid of the j^{th} cluster in total K clusters formed, m_j is number of patterns in j^{th} cluster, and $\mathbf{x}_i^{(j)}$ is the i^{th} pattern in j^{th} cluster.

Squared Error Clustering Algorithm

Algorithm 1 Squared Error Clustering Algorithm

- 1: Select an initial partition \mathbf{X} of patterns, with a fixed k number of clusters, and cluster centers
- 2: repeat
- 3: for each pattern $\mathbf{x}_i \in \mathbf{X}$ do
- 4: Find centroid c_j (of cluster C_j) having minimum distance with pattern x_i
- 5: $C_j = C_j \cup \{\mathbf{x}_i\}$
- Compute the new centroids (cluster centers) of all the clusters
- 7: end for
- 8: Merge and split clusters based on some heuristic criterion
- 9: until convergence is achieved
- 10: **end**

The steps of squared error clustering algorithm are listed in algorithm 1. The repetition in the *repeat* ... *until* loop continues until the convergence is achieved, i.e., the cluster membership is stable.

 \Rightarrow The *k*-means tries to find *k* number of clusters, the count is specified by the user. These are represented by their centroids. It is simplest and most commonly used algorithm that uses *squared error* criterion.

 \Rightarrow The k-means algorithm starts with a random initial partition and keeps reassigning the patterns to clusters based on the similarity between the pattern and the cluster centers (centroid distances) until a convergence condition is reached.

K-Means Clustering ..

 \Rightarrow The *k*-means is a partitional clustering technique that tries to find a *k* number of clusters (count is given by the user). These are represented by their centroids. It is simplest and commonly used algorithm that uses squared error criterion.

 \Rightarrow k-means algorithm starts with a random initial partition and keeps reassigning the patterns to clusters based on the similarity between the pattern and the cluster centers (centroid distances) until a convergence condition is reached.

 \Rightarrow In clustering process, there is no reassignment of any pattern from one cluster to another, this gives gives it a property of *linear time complexity*.

 \Rightarrow Advantages of *k*-means: 1). It is easy to implement, 2. Its time complexity is O(n), where *n* is total number of patterns. Disadvantage: sensitive to selection of the initial partition – if not properly selected, it may converge to a *local minima* of the criterion function value.

 \Rightarrow Using the k-means approach to perform clustering.

Figure 3: The *k*-means clustering is sensitive to initial partition

 \Rightarrow Fig. shows 2D patterns P.Q.R.S.T, U, V. Process is started with initial patterns P, Q, R. Around these, three (given k = 3) clusters are to be constructed. We we end up with partition $\{\{P\}, \{Q, R\}, \{S, T, U, V\}\},\$ where three clusters are ellipses.

 \Rightarrow The squared error criterion value turns out to be very large for this partition (see eqation (3)). This will happen, for the centroid vs. the patterns in the largest ellipse.

⇒ Hence, we construct a better partition {{P, Q, R}, {S, T}, {U, V}, where clusters are shown by rectangles. This grouping results to the global minimum value of the squared error criterion function, for clustering comprising of k = 3 clusters.

⇒ The correct three-cluster solution is obtained by choosing, for example, *P*, *S*, and *U* as the initial cluster *means*, which will form the partition as $\{\{P, Q, R\}, \{S, T\}, \{U, V\}\}.$

Chowdhary, K.R. (2020). Data Mining. In: Fundamentals of Artificial Intelligence. Springer, New Delhi. https://doi.org/10.1007/978-81-322-3972-7_17 pp. 519-534.

