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Discrete Attribute Vectors

⇒ In our discussions we have
used single attributes to
compute the Bayesian
probability. However, in fact,
the objects have many
characteristics, i.e., many
attributes, e.g., an apple is
identified by all these attributes
together: round shape, sweet
taste, juicy material, red (or
red-green) color, size of 2-inch
diameters, and so on.

⇒ We cannot recognize it’s
class properly if only part of
these attributes are made
known. Attributes are

represented by attribute vector,
say, x = {x1, x2, ..., xn}.
⇒ Certain characteristics
together, of an apple, may
identify it as Kashmiri apple or
Himachal apple. This way, an
object may be in many of the
one class. In domain of
geometric shapes, assume two
classes: pos and neg . If ci is
the label of the i th class, and x
is the vector of object we want
to classify, the Bayes formula is:

P(ci |x) =
P(x|ci ).P(ci )

P(x)
. (1)
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Discrete Attribute Vectors

Example: Training examples
are given in Table 1 below. We
want the machine to recognize
the Class: pos or neg

Ex Shape Filling Shad Cl.

Ex1 Diam Shading Light pos
Ex2 Rect Shading Dark pos
Ex3 Rect Hashing Dark pos
Ex4 Tria Clear Light pos
Ex5 Tria Hashing Dark pos
Ex6 Diam Clear Dark neg
Ex7 Elli Hashing Dark neg
Ex8 Elli Clear Light neg
Ex9 Circ Hashing Dark neg
Ex10 Circ Shading Light pos

The probabilities of the
individual attribute values, and
of class labels are computed
using the relative frequencies as
discussed above.
Consider Shadow = Light.
Hence, P(Shadow = Light) =
4/10 = 0.4. Also,

P(Dark) =
6

10
= 0.6

P(pos) =
6

10
= 0.6

P(neg) =
4

10
= 0.4
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Discrete Attribute Vectors...

The conditional probability of a
attribute in a class is determined
by relative frequency is:

P(Light|pos) =3

6
= 0.5

P(Light|neg) =1

4
= 0.25

P(Dark |pos) =3

6
= 0.5

P(Dark |neg) =3

4
= 0.75

We calculate the conditional
probabilities, using the Bayes

formula:

P(pos|Light) =3

4
= 0.75

P(neg |Light) =1

4
= 0.25

P(pos|Dark) =3

6
= 0.5

P(neg |Dark) =3

6
= 0.5

First value in the above is:

P(pos|Light)

=
P(Light|pos)× P(pos)

P(Light)

=
0.5× 0.6

0.4
= 0.75
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Computing the Vector’s Probability

⇒ Note that sum of:
“probability of pos given that it
is Light” and “probability of
neg given that it is Light” is 1.
Similarly, “probability of pos
given that it is Dark” and
“probability of neg given that it
is Dark” sums to 1.

⇒ In formula (1), denominator
being same for each class, we
choose the class that maximizes
the numerator P(x|ci ).P(ci ).
Here P(ci ) is easy to estimate
by relative frequency of ci in the
training set. However, the
P(x|ci ) is not straightforward.

⇒ P(x|ci ) of vector x in (1) is
the probability that a randomly
selected member of class ci is
described by vector x.

⇒ P(x|ci ) cannot be computed
by freq., as, for class ci we have
no count for x. In “geometric
shapes” domain, size of instance
space: table 1 is
5× 3× 2 = 30., comprising
different examples, but the set
contains only 10. Each one
represented by one training
example, while the other vectors
(i.e., 30− 10 = 20) have not
been represented at all.
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Computing the Vector’s Probability...

⇒ Relative frequency of x in six
positive examples in table 1 can
thus be either P(x|pos) = 1/6,
when vector x exists in them,
P(x|pos) = 0, when vector x
does not exist.

⇒ Any x identical to a training
example “inherits” this
example’s class label. But, if
x /∈ training set, then P(x|ci ) =
0, and P(x|ci ).P(ci ) = 0. ∴ we
are unable to choose most
probable class. Also, cannot
calculate probability of an event
that occurs only once or does
not not occur (?).

⇒ Above conditions do not arise
in single attributes, e.g, Shadow,
Shadow = Light occurs three
times among pos examples and
once among the neg (tab-1).

⇒ Corresponding probabilities
are: P(Shadow = Light|pos)=
3/6, P(Shadow = Light|neg) =
1/4. So, if an attribute consist
only two /three values, chances
are that each of these values is
present in the training set more
than once, providing better
grounds for computing
probabilities.
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Naive Bayes Classifier...

Naive Bayes Classifier:
⇒ “Naive” Bayesian
classification is the optimal
method of supervised learning if
the values of the attributes of
an example are independent
given the class of the example.

⇒ Time required to learn a
naive Bayesian classifier is linear.
No learning algorithm that
examines all its training data
can be faster than Naive Bayes.

⇒ In Bayes, the vector x is
labeled with class that
maximizes P(x|ci ).P(ci ). If
product’s value is 0.8 for one

class and 0.2 for the other, the
classifier’s behavior will not
change even if probability
estimates miss accuracy mark
by ten or 20%.

Example: For attributes in
table 1, apply Bayesian formula
to find probabilities of vector:
x = {Shape = Rectangle,
Filling = Shading , Shadow =
Light}, if it exits in class pos or
in neg. For this, we want:

P(pos|x) = P(pos).
3∏

i=1

P(xi |pos).

(2)
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Naive Bayes Classifier...

P(neg |x) = P(neg).
3∏

i=1

P(xi |neg).

(3)
Procedure: Calculate numerator
of Bayes formula separately for
each attrib vect., then choose
class with higher value. In
training set, class pos has prob.
6/10, neg has 4/10. Probs. of
attribute vector

∏3
i=1 P(xi |pos)

are:

P(Shape = Rectangle|pos) = 2/6

P(Fillinge = Shading|pos) = 3/6

P(Shadow = Light|pos) = 3/6

Similarly, probabilities of
attribute vector

∏3
i=1 P(xi |neg)

are:

P(Shape = Rectangle|neg) = 0/4

P(Fillinge = Shading|neg) = 0/4

P(Shadow = Light|neg) = 1/4
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Naive Bayes Classifier...

Based on above, we obtain:

P(pos|x) =P(pos).
3∏

i=1

P(xi |pos)

=(0.6).
2

6
.
3

6
.
3

6

=(0.6).
18

216
= 0.05

P(neg |x) =P(neg).
3∏

i=1

P(xi |neg)

=(0.4).
0

4
.
0

4
.
1

4

=(0.4).
0

64
= 0.00

Since P(pos|x) > P(neg |x), the
label of the vector x is class pos.
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