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Continuous Attribute Vectors

⇒ In continuous attributes, e.g,
age, percentile marks, speed of
car, temperature values, relative
frequency is impractical.
⇒ Let a population of 900, we
want to find, given one person
as sample, to what age he/she
belongs? But, there can be
infinite number of ages. So, we
divide ages in 10 intervals
(0, 10], ..., (90, 100], like 10
different attributes.

⇒ Frequency count in age
interval a1 to a10 represented by
‘×’ signs, one ‘×’ is population
of 30. Population at (30, 40]

(a4) is 4× 30 = 120.

Figure 1: (a) Population at each
age intervals, (b) Histogram plot of
age interval x versus population
density p(x)
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Continuous Attribute Vectors...

⇒ In histogram, each step i
corresponds to population count
in interval ai . A function p(x),
has value in ith slot as Ni/N.

So,
∑

Ni

N = 1.

⇒ We may shorten the interval
in the histogram by increasing
count of intervals, and ensure
that number of persons in each
slot are sufficient for reliable
probability estimates.

⇒ In a general case, we keep
reducing the length of interval
until it becomes infinitesimally

small, plot (Fig. 1) becomes a
continuous function p(x)
(Fig. 2). High and low count
refers to density of people, so
p(x) is probability density
function (pdf).

Figure 2: Probability Density
Function (Bell curve)

Prof K R Chowdhary Machine Learning 3/ 8



Continuous Attribute Vectors...

⇒ In Fig. 2, slot “a to b” is
probability of x ∈ [a, b]. It is
relative size of the area under
this section of pdf curve.

⇒ p(x) is probability at x . If
pdf has been created exclusively
from examples in class ci then
this probability is pci (x), in
discrete attributes it was
P(x|ci ).
Bayes Formula for
Continuous Attributes: In pdf
it is possible to use Bayes
formula. Now, conditional
probability P(x |ci ) becomes
pci (x), and P(x) becomes p(x).

For single attribute x , Bayes
formula is:

P(ci |x) =
pci (x).P(ci )

p(x)
, (1)

⇒ P(ci ) = Estimated relative
freq. of class ci in training set,
p(x) = pdf due to all training
examples, pci (x) = pdf due to
training examples in class ci .

⇒ We assume attributes as
mutually exclusive. For a vector
x = {x1, ..., xn}, pdf is:

pcj (x) =
n∏

i=1

pcj (xi ) (2)
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Bayes Formula for Continuous Attributes ...

⇒ After discritizing continuous
attribute we get approximate
pdf. We can also use standard
probability model, known as
Gaussian function. Shape of the
function is “bell” function
(Fig. 2), maximum is at x = µ
(mean), towards both directions
height decreases. Gaussian
curve can be represented by:

p(x) = k .e−
(x−µ)2

2σ2 , (3)

⇒ The e is base of natural log,
σ is variance. Greater is the
difference between x and µ,

smaller will be p(x). How steep
is slop, depends on σ2. Greater
variance means smaller
sensitivity to the difference
between µ and x , and it will
result to a flatter bell curve.
Smaller value of σ, it will result
to a narrower bell curve.

⇒ Coefficient k makes the area
under the curve as 1, which is a
requirement for the theory of
probability. This happens when
value of k is,

k =
1√
2πσ2

. (4)
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Area under the Bell curve is unity

To show that area under bell curve for pdf p(x) = ke−
(x−µ)2

2σ2 is 1,
we substitute value of k :

p(x) =
1√
2πσ2

e−
(x−µ)2

2σ2

Next, we need to calculate the integral of p(x) over the entire
range of x , which is from −∞ to +∞:∫ +∞

−∞
p(x)dx =

∫ +∞

−∞

1√
2πσ2

e−
(x−µ)2

2σ2 dx

To solve this integral, we can make a substitution. Let: z = x−µ
σ .

Taking derivative both sides, we get, dx = σdz . The limits of
integration remain the same as x approaches −∞ and +∞. When
x = −∞, then z = −∞ and when x = +∞, z = +∞.
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Area under the Bell curve is unity ...

We can rewrite the integral:∫ +∞

−∞
p(x)dx =

∫ +∞

−∞

1√
2πσ2

e−
(zσ)2

2σ2 σdz

=
1√
2πσ2

σ

∫ +∞

−∞
e−

z2

2 dz

The integral
∫ +∞
−∞ e−

z2

2 dz is a well-known result, and evaluates to:∫ +∞

−∞
e−

z2

2 dz =
√
2π

Substituting this back into our expression, we get:

∫ +∞

−∞
p(x)dx =

1√
2πσ2

σ ·
√
2π = 1

which shows that area under the bell curve is 1, and p(x) is a valid
probability density function.
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Parameter Values

⇒ Since formula (3) is standard
Bell curve, we can use it to
calculate probability pci (x). For
this we require µ and σ. Let
there are m classes of ci in
training set, xi is value of given
attribute in i-th example, then
mean (µ) and variance (σ) are:

µ =
1

m

m∑
i=1

xi , (5)

and

σ2 =
1

m − 1

m∑
i=1

(xi − µ)2. (6)

⇒ Centre of Gaussian curve
(i.e., µ) is obtained by
arithmetic average of values
observed in training examples,
and variance (σ) is obtained by
squaring difference of xi and µ.

⇒ To calculate the variance, we
divide expression by m − 1 and
not by m, this is to compensate
that, µ itself is an estimate.
The variance should therefore
be some what higher then it
would be if we divided by m.
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