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Linear Classifiers

⇒ Examples with n-dimensional
instance space, positive and
negative examples tend to
cluster in different regions.

⇒ This observation motivates
us to use another approach to
classification where we identify
decision surfaces that separates
the two classes.

⇒ A very simple approach is to
use a linear function.

⇒ The goal of predictive
modeling is to build a model
that predicts some specified
attribute(s) value from the
values of the other attributes.

⇒ We will elaborate on linear
classifier in general.

⇒ We shell use a domain with
attributes as real numbers. To
use these attributes in a
algebraic function shown in
Fig. 1
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Linear Classifier

Figure 1: A linear classifier in a
domain of two real valued
attributes x1, x2

⇒ Examples are labeled as

positive (+) and negative (-),
and two classes are separated by
a linear function:

2.5− 0.8x1 − x2 = 0 (1)

⇒ Equation (1)1, the variables
x1 and x2 are real numbers.
Exercise: Given the graph in
Fig. (1), construct the eq. (1).
Hint: Extend line to -x1
direction, and the angle m in
y = max + c is − 2

2.5 = 0.8

1This equation is a standard line equation y = mx + c, where m is slope
and c is point where this line intersects on x axis. We have used coordinates
x1, x2, which can be extended to n coordinates x1 ... xn.
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Linear Classifier...

⇒ Table 1 shows seven
examples of attributes (x1, x2),
value of classifier
“2.5− 0.8x1 − x2,” and class of
the example.

⇒ When value of classifier is
neg , point or the coordinate is
falling above the straight line in
Fig. 1, when classifier returns
positive, the example is taken as
belonging to pos class.

⇒ Hence, given a classifier like
this, we are able to classify any

attribute set, which is a two
dimensional vector.

Table 1: Set of attributes (x1, x2)
and their classes

x1 x2 2.5−0.8x1−x2 Class

1.0 2.3 −0.6 neg
1.6 1.8 −0.58 neg
2.1 2.7 −1.88 neg
2.4 1.4 −0.82 neg
0.8 1.1 +0.76 pos
0.8 1.8 +0.06 pos
1.4 0.8 +0.58 pos
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Linear Classifier...

⇒ Note only the linear
classifier (1) classifies examples
as pos and neg, but any
classifier, e.g., 1.5 + 2.1x1−
1.1x2, will classify infinitely
large number of examples as
pos/neg. Generic form is:

w0 + w1x1 + w2x2 = 0. (2)

And, for a domains with n
attributes is:

w0+w1x1+ ...+wnxn = 0. (3)

In eq. (3), if n = 2, it a line, if
n = 3, it is a plane, for n > 3, it

is a hyperplane. If 0th attribute
x0 = 1, eq. (3) becomes:

n∑
i=0

wixi = 0. (4)

Classifier’s behavior is decided
by coefficients wi (weights).
Task of ML is: find out wi ’s
values. In equ. y = mx + c , the
m is angle w.r.t. x axis, and in
(3), coefficients w1, ...,wn define
angle of hyperplane, w.r.t.
system of coordinates, w0 is bias
or offset – the hyperplane has
distance from the system
coordinates.
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Linear Classifier...

⇒ Bias versus Threshold: Bias
is amount of error introduced by
approximating real-world
phenomena with a simplified
model.

⇒ Bias in Fig. 1 is w0 = 2.5,
lower the bias, classifier shifts
closer to origin [0, 0], higher
value shifts it away from origin.
At, w0 = 0, the classifier
intersects the origin of the
coordinate system. Equation (3)
can also be written as:

w1x1 + w2x2 + ...+ wnxn = θ,
(5)

here, θ = −w0. This θ is called
threshold that weighted sum
has to exceed it, if the example
is to be positive.

Table 2: Attributes (x1, x2), their
weighted sum and threshold

x1 x2 (−0.8x1−x2) θ

1.0 2.3 −3.3 −2.5
1.6 1.8 −3.8 −2.5
2.1 2.7 −4.26 −2.5
2.4 1.4 −3.52 −2.5
0.8 1.1 −1.74 −2.5
0.8 1.8 −2.24 −2.5
1.4 0.8 −1.92 −2.5
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Perceptron Learning

⇒ Last 3 examples (table 2):
weighted sum in third column
exceeds θ, so they have pos
labels. First 4 examples:
weighted sum < θ, so
label=neg.

⇒ Perceptron Learning: To
simplify linear classifier, we
assume that training example x
is described by n binary
attributes for n dimensions,
xi ∈ x is binary, i.e., 0 or 1.

⇒ For c(x) = 1, class=pos, for
c(x) = 0, it is neg . Real class is
c , and hypothesized class is

h(x), (h = hypothesis). If,∑n
i=0 wixi > 0, classifier

hypothesizes x as pos, so
h(x) = 1.

⇒ When,
∑n

i=0 wixi ≤ 0, label
is neg and h(x) = 0.

⇒ Examples with c(x) = 1 are
linearly separable from those
with c(x) = 0. So, there exists
a linear classifier that can label
correctly all the training
examples x, and for each
h(x) = c(x). Task of ML: find
weights wi that correctly
classifies all x.
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Inducing the Linear Classifier

⇒ Objective: for any attribute
example x with real class
c(x) = 1, the classifier must
hypothesize the example as
positive, i.e. h(x) = 1, and
when c(x) = 0, it must
hypothesize x as negative, i.e.
h(x) = 0. We can do this by
adjusting the weight wi .

⇒ When classifier is presented
with training example x, it must
return its label as h(x). If
c(x) ̸= h(x), weights wi are not
perfect, so they must be
modified so that c(x) = h(x).

⇒ Assume that c(x) = 1 and

h(x) = 0. This happens only if∑n
i=0 wixi < 0: an indication

that the weights are too small.
So, weights must be increased
so that

∑n
i=0 wixi > 0, (So,

h(x = 1).

⇒ It is simple to understand
that only the weight of wi be
increased for which xi = 1,
(when xi = 0, wi .xi =
wi .0 = 0). (This is the reason
for choosing binary attributes!!).

⇒ Similarly, when c(x) = 0 and
h(x) = 1, we decrease the
weights wi for which xi are 1, so
that

∑n
i=0 wixi < 0.
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Weight adjustment in Perceptron

Weight adjustment Summary:

• Hypothesized label, h(x) = 1
when real class label c(x) = 0:
decrease wi for attribute xi = 1,

• Hypothesized label, h(x) = 0
when real class label c(x) = 1:
increase wi for attribute xi = 1,

• Both labels same, c(x) =
h(x): no wt. adjustment reqd.

Regulate the weights by:

wi = wi+η.[c(x)−h(x)].xi (6)

η ∈ (0, 1], called learning rate.

• Checking validity of equation
(6): (i) When c(x) = h(x): wi

remains unchanged.

(ii) When c(x) = 1 and
h(x) = 0: RHS of equ. (6) is:
wi + η.1.xi = wi + η, as xi = 1.
This increases wi , so it is ≥ 1,
hence perceptron fires, and
makes h(x) = 1.

(iii) When c(x) = 0 but
h(x) = 1: RHS of equ. (6) is:
wi + η.[−1].1 = wi − η, as
xi = 1. This decreases wi to
≤ 0, it stops the perceptron
from firing, and makes h(x) = 0.

This concludes how perceptron
hypothesizes the same label as
the label of c(x).
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Perceptron Learning Algorithm

⇒ To start with, weights wi of
perceptron are initialized to
some random values. Next,
each training example x with
attributes x1, ..., xi , ..., xn, is
presented to the classifier, one
at a time. Each time, every
weight of the classifier is
subjected to equation (6).

⇒ The training for last example
x shows that one epoch (round)

of training is complete. If all the
labels are correctly
hypothesized, indicated by
h(x) = c(x), the training
process is terminated, else it
repeats from first example
again. Usually, many such
rounds are needed to train the
perceptron. The corresponding
algorithm is shown as
algorithm 1.
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Perceptron Learning Algorithm...

Algorithm 1 Perceptron learning Algorithm

1: % Let two classes be c(x) = 1 and c(x) = 0, and they are
linearly separable.

2: Initialize weights wi to some small random numbers.
3: Choose some suitable learning rate η ∈ (0, 1].
4: while c(x) ̸= h(x) for all training examples do
5: for each training example x = (x1, ..., xn), having class c(x)

do
6: h(x) = 1 if

∑n
i=0 wixi > 0, otherwise h(x) = 0.

7: Update each weight using the formula, (6)
8: end for
9: end while
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Perceptron Learning Algorithm...

We are given a table of
examples as 3, with three
examples Ex1 to Ex3, each
having three binary attributes.

Table 3: Examples for perceptron
learning

Example x1 x2 x3 c(x)
Ex1 1 1 0 1
Ex2 0 0 1 0
Ex3 1 0 1 0

We consider that learning rate
η = 0.6, and randomly

generated initial weights
w0,w1,w2,w3 are
[0.15, 0.2, 0.1, 0.25] and x0 = 1.
Given these, our objective is to
separate the “+” examples
(Ex1) from “-” examples (Ex2,
Ex3).
The classifier’s hypothesis about
class x: h(x) = 1 if∑n

i=0 wixi > 0, and h(x) = 0,
otherwise. After each example
is presented to the classifier, all
the weights are adjusted through
formula (6), as table 4 shows.
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Perceptron Learning Algorithm...

Table 4: Weight adjustments for perceptron learning

Var.→
Examples ↓

x1 x2 x3 w0 w1 w2 w3 c(x) h(x) c(x)-h(x)

Random clas-
sifier

0.15 0.2 0.1 0.25

Ex1→ 1 1 0 1 1 0
New Classi-
fier:

0.15 0.2 0.1 0.25

Ex2→ 0 0 1 0 1 −1
New Classi-
fier:

0.15 −0.4 0.1 −0.35

Ex3→ 1 0 1 0 1 −1
New Classi-
fier:

−0.45−0.4 0.1 −0.35
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⇒ About table 4: Only in the
example Ex1, there is
c(x) = h(x), but in Ex2 and
Ex3, it is not. So, the classifier
is trained in three steps. It
classifies Ex1 in one class (+)
and Ex2, Ex3 in “−” class, as
seen in the column c(x)− h(x
of the table. Final version of
classifier:
−0.45−0.4x1+0.1x2−0.35x3 =
0, no longer classifies wrongly.
The training has thus been
completed on one epoch.

⇒ Note: Learning has taken
place using perceptron, and
have obtained a linear classifier:

−0.45−0.4x1+0.1x2−0.35x3 = 0,
(7)

It classifies data set
x = [x0, x1, x2, x3] as either “+”
or “-”, in single step. So,
classifier has been induced,
steps are shown in table 4.

⇒ Important: Irrespective of he
initial weights (w0..wn), size n
of attribute vector, and learning
rate η, if the “+” and “-”
classes are linearly separable,
this algorithm is guaranteed to
find a version of hyperplane in
finite number of steps, that
separates the classes.
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