Machine Learning (Linear Classifiers and Regression)

Prof K R Chowdhary

MBM University

October 25, 2024

Þ

 \Rightarrow Examples with *n*-dimensional instance space, positive and negative examples tend to cluster in different regions.

 \Rightarrow This observation motivates us to use another approach to classification where we identify decision surfaces that separates the two classes.

 \Rightarrow A very simple approach is to use a linear function.

 \Rightarrow The goal of predictive modeling is to build a model that predicts some specified attribute(s) value from the values of the other attributes.

⇒ We will elaborate on linear classifier in general.

 \Rightarrow We shell use a domain with attributes as real numbers. To use these attributes in a algebraic function shown in Fig. [1](#page-2-0)

つくい

Linear Classifier

Figure 1: A linear classifier in a domain of two real valued attributes x_1, x_2

 \Rightarrow Examples are labeled as

positive $(+)$ and negative $(-)$. and two classes are separated by a linear function:

$$
2.5 - 0.8x_1 - x_2 = 0 \qquad (1)
$$

 \Rightarrow Equation $(1)^1$ $(1)^1$, the variables x_1 and x_2 are real numbers. Exercise: Given the graph in Fig. [\(1\)](#page-2-0), construct the eq. [\(1\)](#page-2-1). Hint: Extend line to -x1 direction, and the angle m in $y = max + c$ is $-\frac{2}{2.5} = 0.8$

¹This equation is a standard line equation $y = mx + c$, where m is slope and c is point where this line intersects on x axis. We have used coordinates x_1, x_2 x_1, x_2 , which can be extended to *n* coordinates $x_1 \ldots x_n$

⇒ Table [1](#page-3-0) shows seven examples of attributes (x_1, x_2) , value of classifier

"2.5 – $0.8x_1 - x_2$," and class of the example.

 \Rightarrow When value of classifier is neg, point or the coordinate is falling above the straight line in Fig. [1,](#page-2-0) when classifier returns positive, the example is taken as belonging to pos class.

 \Rightarrow Hence, given a classifier like this, we are able to classify any attribute set, which is a two dimensional vector.

Table 1: Set of attributes (x_1, x_2) and their classes

Linear Classifier...

 \Rightarrow Note only the linear classifier [\(1\)](#page-2-1) classifies examples as pos and neg, but any classifier, e.g., $1.5 + 2.1x_1 1.1x₂$, will classify infinitely large number of examples as pos/neg. Generic form is:

$$
w_0 + w_1x_1 + w_2x_2 = 0. \quad (2)
$$

And, for a domains with n attributes is:

$$
w_0 + w_1 x_1 + \ldots + w_n x_n = 0. (3)
$$

In eq. [\(3\)](#page-4-0), if $n = 2$, it a line, if $n = 3$, it is a plane, for $n > 3$, it Prof K R Chowdhary Machine Learning 1997 14

is a hyperplane. If 0th attribute $x_0 = 1$, eq. [\(3\)](#page-4-0) becomes:

$$
\sum_{i=0}^n w_i x_i = 0. \qquad (4)
$$

Classifier's behavior is decided by coefficients w_i (weights). Task of ML is: find out w_i 's values. In equ. $y = mx + c$, the m is angle w.r.t. x axis, and in [\(3\)](#page-4-0), coefficients $w_1, ..., w_n$ define angle of hyperplane, w.r.t. system of coordinates, w_0 is bias or offset – the hyperplane has distance from the system coordinat[es.](#page-3-1)^{□ }} 4 [□] }

 QQ

Linear Classifier...

 \Rightarrow Bias versus Threshold: Bias is amount of error introduced by approximating real-world phenomena with a simplified model.

 \Rightarrow Bias in Fig. [1](#page-2-0) is $w_0 = 2.5$, lower the bias, classifier shifts closer to origin [0, 0], higher value shifts it away from origin. At, $w_0 = 0$, the classifier intersects the origin of the coordinate system. Equation [\(3\)](#page-4-0) can also be written as:

$$
w_1x_1 + w_2x_2 + \dots + w_nx_n = \theta,
$$
\n(5)

here, $\theta = -w_0$. This θ is called threshold that weighted sum has to exceed it, if the example is to be positive.

Table 2: Attributes (x_1, x_2) , their weighted sum and threshold

x_1	x_2	$(-0.8x_1 - x_2)$	θ
1.0	2.3	-3.3	-2.5
1.6	1.8	-3.8	-2.5
2.1	2.7	-4.26	-2.5
2.4	1.4	-3.52	-2.5
0.8	1.1	-1.74	-2.5
0.8	1.8	-2.24	-2.5
1.4	0.8	-1.92	-2.5

Perceptron Learning

 \Rightarrow Last 3 examples (table [2\)](#page-5-1): weighted sum in third column exceeds θ , so they have pos labels. First 4 examples: weighted sum $< \theta$, so $label=neg.$

 \Rightarrow Perceptron Learning: To simplify linear classifier, we assume that training example x is described by n binary attributes for n dimensions. $x_i \in \mathbf{x}$ is binary, i.e., 0 or 1. \Rightarrow For $c(\mathbf{x}) = 1$, class=pos, for $c(\mathbf{x}) = 0$, it is *neg*. Real class is c, and hypothesized class is

 $h(\mathbf{x})$, $(h =$ hypothesis). If, $\sum_{i=0}^n w_i x_i > 0$, classifier hypothesizes x as pos, so $h(\mathbf{x})=1$. \Rightarrow When, $\sum_{i=0}^n w_i x_i \leq 0$, label is *neg* and $h(x) = 0$. \Rightarrow Examples with $c(\mathbf{x}) = 1$ are linearly separable from those with $c(x) = 0$. So, there exists a linear classifier that can label correctly all the training examples x, and for each $h(\mathbf{x}) = c(\mathbf{x})$. Task of ML: find weights w_i that correctly classifies all x.

つくへ

Inducing the Linear Classifier

 \Rightarrow Objective: for any attribute example x with real class $c(\mathbf{x}) = 1$, the classifier must hypothesize the example as positive, i.e. $h(\mathbf{x}) = 1$, and when $c(\mathbf{x}) = 0$, it must hypothesize x as negative, i.e. $h(x) = 0$. We can do this by adjusting the weight w_i .

 \Rightarrow When classifier is presented with training example **x**, it must return its label as $h(\mathbf{x})$. If $c(\mathbf{x}) \neq h(\mathbf{x})$, weights w_i are not perfect, so they must be modified so that $c(\mathbf{x}) = h(\mathbf{x})$. \Rightarrow Assume that $c(\mathbf{x}) = 1$ and

 $h(\mathsf{x})=0.$ This happens only if $\sum_{i=0}^{n} w_i x_i < 0$: an indication that the weights are too small. So, weights must be increased so that $\sum_{i=0}^{n} w_i x_i > 0$, (So, $h(x=1)$. \Rightarrow It is simple to understand that only the weight of w_i be increased for which $x_i = 1$, (when $x_i = 0$, $w_i.x_i =$ w_i .0 = 0). (This is the reason for choosing binary attributes!!). \Rightarrow Similarly, when $c(\mathbf{x}) = 0$ and $h(\mathbf{x}) = 1$, we decrease the weights w_i for which x_i are 1, so that $\sum_{i=0}^n w_i x_i \leq 0$ $\sum_{i=0}^n w_i x_i \leq 0$ [.](#page-0-0)

Weight adjustment in Perceptron

Weight adjustment Summary:

• Hypothesized label, $h(\mathbf{x}) = 1$ when real class label $c(\mathbf{x}) = 0$: decrease w_i for attribute $x_i = 1$,

• Hypothesized label, $h(\mathbf{x}) = 0$ when real class label $c(\mathbf{x}) = 1$: increase w_i for attribute $x_i = 1$,

• Both labels same, $c(\mathbf{x}) =$ $h(\mathbf{x})$: no wt. adjustment reqd. Regulate the weights by:

 $w_i = w_i + \eta$.[c(**x**) – h(**x**)]. x_i (6)

 $\eta \in (0,1]$, called *learning rate*.

• Checking validity of equation [\(6\)](#page-8-1): (i) When $c(\mathbf{x}) = h(\mathbf{x})$: w_i remains unchanged.

 (ii) When $c(\mathbf{x}) = 1$ and $h(x) = 0$: RHS of equ. [\(6\)](#page-8-1) is: $w_i + \eta \cdot 1 \cdot x_i = w_i + \eta$, as $x_i = 1$. This increases w_i , so it is ≥ 1 , hence perceptron fires, and makes $h(\mathbf{x}) = 1$. (iii) When $c(\mathbf{x}) = 0$ but $h(x) = 1$: RHS of equ. [\(6\)](#page-8-1) is: $w_i + \eta$.[-1].1 = $w_i - \eta$, as $x_i = 1$. This decreases w_i to \leq 0, it stops the perceptron from firing, and makes $h(\mathbf{x}) = 0$.

This concludes how perceptron hypothesizes the same label as the label of $c(\mathbf{x})$.

医间周的

 \Rightarrow To start with, weights w_i of perceptron are initialized to some random values. Next, each training example x with attributes $x_1, ..., x_i, ..., x_n$, is presented to the classifier, one at a time. Each time, every weight of the classifier is subjected to equation [\(6\)](#page-8-1).

 \Rightarrow The training for last example **x** shows that one *epoch* (round)

of training is complete. If all the labels are correctly hypothesized, indicated by $h(\mathbf{x}) = c(\mathbf{x})$, the training process is terminated, else it repeats from first example again. Usually, many such rounds are needed to train the perceptron. The corresponding algorithm is shown as algorithm [1.](#page-10-0)

Algorithm 1 Perceptron learning Algorithm

- 1: % Let two classes be $c(x) = 1$ and $c(x) = 0$, and they are linearly separable.
- 2: Initialize weights w_i to some small random numbers.
- 3: Choose some suitable learning rate $\eta \in (0,1]$.
- 4: while $c(x) \neq h(x)$ for all training examples do
- 5: **for** each training example $\mathbf{x} = (x_1, ..., x_n)$, having class $c(\mathbf{x})$ do
- 6: $h(\mathbf{x}) = 1$ if $\sum_{i=0}^{n} w_i x_i > 0$, otherwise $h(\mathbf{x}) = 0$.
- 7: Update each weight using the formula, [\(6\)](#page-8-1)
- 8: end for
- 9: end while

We are given a table of examples as [3,](#page-11-0) with three examples Ex1 to Ex3, each having three binary attributes.

Table 3: Examples for perceptron learning

We consider that learning rate $\eta = 0.6$, and randomly

generated initial weights w_0, w_1, w_2, w_3 are $[0.15, 0.2, 0.1, 0.25]$ and $x_0 = 1$. Given these, our objective is to separate the $+$ " examples (Ex1) from "-" examples (Ex2, Ex3). The classifier's hypothesis about $\sum_{i=0}^{n} w_i x_i > 0$, and $h(\mathbf{x}) = 0$, class x: $h(x) = 1$ if otherwise. After each example is presented to the classifier, all the weights are adjusted through

formula [\(6\)](#page-8-1), as table [4](#page-12-0) shows.

 200

Table 4: Weight adjustments for perceptron learning

 \Rightarrow About table [4:](#page-12-0) Only in the example Ex1, there is $c(\mathbf{x}) = h(\mathbf{x})$, but in Ex2 and Ex3, it is not. So, the classifier is trained in three steps. It classifies Ex1 in one class $(+)$ and Ex2, Ex3 in "−" class, as seen in the column $c(\mathbf{x}) - h(\mathbf{x})$ of the table. Final version of classifier:

 $-0.45-0.4x_1+0.1x_2-0.35x_3=$ 0, no longer classifies wrongly. The training has thus been completed on one epoch.

 \Rightarrow Note: Learning has taken place using perceptron, and have obtained a linear classifier:

 $-0.45-0.4x_1+0.1x_2-0.35x_3=0$ (7) It classifies data set $\mathbf{x} = [x_0, x_1, x_2, x_3]$ as either "+" or "-", in single step. So, classifier has been induced, steps are shown in table [4.](#page-12-0) \Rightarrow Important: Irrespective of he initial weights $(w_0..w_n)$, size n of attribute vector, and learning rate η , if the "+" and "-" classes are linearly separable, this algorithm is guaranteed to find a version of hyperplane in finite number of steps, that separates [th](#page-12-1)e [c](#page-13-0)[la](#page-12-1)[sse](#page-13-0)[s.](#page-0-0) QQ